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-jThis monograph discusses six years of research and theory building at the
Decision Processes Laboratory concerned with predecision processes, the
cognitive processes that occur prior to making the actual decision. These
processes include problem detection, the process by which the decision maker
decides that a problem exists; act generation, the Process of creating
candidate acts that might solve the problem, hypothesis generation where -,
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various states of the world are identified that mlqht affect the outcomes of
various actions; and outcome generation, a process where the possible

*Tresults or outcomes of. actionsare generated.

There are nine substantive chapters in the moiiograph. The first five

chapters are concerned with modeling the various p -decision processes and
describe the empirical research that addresses the;e models. Chapter 6 is,
devoted to research on various topics such as sche:rmta, causal explanation.
small group research, Individual differences, and txpertise in various
predecision processes. Chapter 7 discusses recoumundations for improving
predecislon performance, including specific attempts to aid the decision
maker, and Chapter 8 presents, in summary form, th,. major conclusions of
this program of research. In Chapter 9, general sjggestions are made for
further research in the area Also included are titles and abstracts
for all technical reports pr ced In both contracts.
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CHAFER 1. INRODUMcON

o• This is the final report for the project "rhe predecision processes

of act and outcome generation" sponsored by the Engineering Psychology

Programs, Office of Naval Research. The project began August 15, 1980 and
ended September 30, '1983. The goal of this project was to develop theocy

and to do research on act and outcome generation processes. The strategy
% employed in this project was to blend concepts drawn from three areas:
% decision analysis, behavioral decision theory, and cognitive psychology.

As part of this project, 18 experiments were conducted, and 9 technical
reports were issued concerning the processes of act and outcome generation.

This is not a typical final report. Rather than write a brief overview
of the experiments conducted in the present contract, we have chosen to
present the gist of our thinking on predecision processes in monograph
form. In doing this, we review research and theory developed in our
previous hypothesis generation contract, research and theory from the

present contract, and speculative theory that we have recently developed on
problem detection.

The actual order of development of the three major theories presented
here, problem detection, hypothesis generation, and act and outcome
generation, was hypothesis generation (1978-1980), act and outcome
generation (1980-1983), and problem detection (1983). Our theories for the

various predecision processes are in the order in which we believe they
come into play in problem structuring, not in the order that we developed

. them, although such a description might better display the development of.
our thinking. For example, our ideas on problem detection profited by six
years of research on related topics. The problem detection theorizing also
is so recent that it has not been the subject of empirical work; we will
undoubtedly refine our theory when data is collected. We have also made
slight changes to the description of our hypothesis generation model and
research to reflect our current thinking on this topic.

The discussion that follows is organized according to topics and
does not attempt to explain experimental procedures and results in detail.

To attempt this task would result in several hundred more pages of text
that would. be largely redundant with our previous technical reports.
Instead, as various topics are discussed; reference is made to previous
technical reports which contain these details, or to reports which contain
relevant references to the general literature. So that interested readers
can obtain more information, these technical reports are cited using
numerals (is. 1, 5, 9). The titles and abstracts for these technical
reports are presented in section 11. The technical reports numbered 1-9 are
from the hypothesis generation contract, and those numbered 10-18 are from
the act and generation contract.

-There are nine substantive chapters in the monograph. The first five
chapters are concerned with modeling the various predecision processes and

* •describe the empirical research that addresses these models. Chapter 6 is
devoted to research on various topics such as schemata, causal explanation,
small group research, individual differences, and expertise in various

.." predecision processes. Chapter 7 discusses recommendations for improving
predecision performance, including specific attempts to aid the decision
maker, and chapter 8 presents, in summary form, the major conclusions of

this program of research. In chapter 9, general suggestions are qade for
further research in the area of predecision processes.

elm, 1.1



.. CaUPTU 2. MAT AU PlRZCSI! POCUSS?

J, I In general teors, predecision processes are the cognitive processes
that occur prior to the final evaluation that leads to a decision.
Predecision processes may include the recognition that a problem exists
that may require a decision and further action, problem definition and
analysis, the generation of possible actions that might possibly solve the

.. problem, the generation of possible states of the vorld that may affect the
outcomes of possible actions, and the generation of outcomes themselves. In
the sections that follow, comments are made as to vhy predecision processes
have received relatively little attention, the concept of an ill-defined
problem is discussed, and each of these predecision processes are further
defined in the context of ill-defined problems.

The traditional focus of decision theory. Decision theory has
traditionally focused on the act of deciding itself. Host decision theory
inquiries start with fully structured problems, problems where the possible
actions, the states of the world that determine the outcomes, and the
outcomes are all specified. The techniques of decision theory are applied
to the evaluation of outcomes, or the choice of action. Rovever, the
structure of the problem is usually a givem. This emphasis is probably a
historical accident due to the origin of modern decision theory in
economics (Von Neumann & Morgenstern, 1947) at a time when psychology had
little to offer to the understanding of how decision problems are
structured.

One notable exception to this general picture is found in decision
analysis. In decision analysis, attempts are made to capture the structure
of the decision problem by eliciting this structure from the decision maker
(Raffia, 1968) by using various elicitation techniques. This technology,
however, has been created by decision analysts interacting with their
clients and adopting techniques that seem to be effective, but there has
been almost no research that attempts to understand the cognitive
mechanisms used by decision makers when they structure decision problems.
Raiffa (1968), for example, stated that explaining how humans develop
problem structure was a problem he wanted to "duck".

The importeace of uderstanding predecisiou proceeses. The importance
of understanding predecision processes should be obvious. As the structure
of the decision problem is the model that the decision maker uses in making
the decision, the adequacy and completeness of the model determines the
quality of the decision to a large degree. These remarks apply with even
more force to intuitive decision making. Decision analysis is a collection
of informal elicitation techniques which have been adopted because they
seen to tease the structure of the decision problem from the client. It
seems reasonable to assume that the decision problem structure of the
intuitive decision maker is less complete and less adequate than that of
a client aided by a decision analyst.

Without understanding the extent to which decision makers can create a
problem structure that is isomorphic with reality, the concern with
adopting the optimal decision seems to be somewhat pointless. it is a well-
known principle of decision theory that optimality is always defined in
terms of a model. Therefore, a decision can be optimal in terms of the
model, but mon-optimal in terms of the actual situation because of a lack

2.1
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of Isomorphism between the model and the situation being modeled. The
implications of the results to be presented here are that there is reason
to be concerned about how completely a decision maker can structure a
decision problem. Thii concern, if it is valid, suggests that spending a
great deal of additional effort studying bow to optimise decisions which
may be baoed on incomplete models say be less profitable than spending a
comparable effort to understand the extent to which humans can produce good
problem structure.

Therefore, there is the distinct possibility that the cart has been
pat before the borse in the development of decision theory. A more rational
approach might be to first study the extent to which decision makers can
produce problem structures that ore isomorphic with reality. Then, if it
can be shown that such isomorphism exists, develop optimization techniques
that work with that structure. The purpose of the projects described in
this report was to start the study of predecision processes and to
determine the extent of the isomorphism between decision models and
reality.

Ill-defined problems. Problem structuring is sost important in the
class of problems that are termed "ill-defined" (Taylor, 1974). These
problems are typically non-routine problems for which no standard
operating procedure" exists, and for this reason are often the most
challenging and difficult problems that the decision maker has to face.
Ill-defined problems are problems which must be formulated in a fruitful
manner by creating structure where little or no structure existed
previously. Ill-defined problems may be ill-defined because the decision
maker's present state is poorly understood, the goal state is poorly
understood, or the transformations necessary to move the decision maker
from the present state to the goal state are poorly understood. For
example, a task force commander may experience a surprise attack in force.
Following this attack, the preseat state nay be poorly understood until the
commander has damage reports and time to take stock of losses, the goal
state may be poorly defined because the original goal may no longer be
reachable, and the transformations necessary to reach the original goal or
any alternate gol may also be poorly defined due to a lack of information
about the commander's present resources.

The extent to which the problem is ill-defined is a major determinant
of its difficulty since the most difficult problems are often those in
which the present states, goal #tates, and transformations are all poorly
defined. In the*e situations, the decision maker must first define the
missing parts of the problem structure before the decision can be made.

This is not to say that well-defined problems are necessarily easy.
Chess (de Groat, 1965), for example, is played by a rigid set of rules, the
beginning state and the goal state are explicitly defined, and the
molecular operations to achieve the goal are exactly specified. Despite
this structure, it is a difficult and fascinating game because the
combinatorial possibilities of the moves are so high.

Irief deeriptim of various predeciaons processes.

In the following paragraphs, brief descriptions of various predecision
processes are presented. The processes described below are one possible

2.2



categorization of important predecision processes, other categorizations
are possible, and no claim is made that these categories are exhaustive. It
is also important to note that although these processes are presented
sequentially, the decision maker does not necessarily proceed through these
processes in a step-vise manner. Rather, it seems much more probable that
the decision maker changes from one predecision process to another at will.
Thus problem definition, act, hypothesis, and outcome generation may occur
repeatedly while thinking about the a problem, as the decision maker
discovers new dimensions and ramifications to the problem.

Problem detection. Problem detection is the process that alerts the
decision maker to the need to make a decision. Without this process,
decisions would not get made because the the decision maker would never
realize the necessity of stopping planned a, vities, and charting a new
course of action (Corbin, 1980).

Problem detection, although it creai * the opportunity for a new
decision, has its roots in earlier decisio and plans for action, and it
is in the context of these plans that pi i is are detected. Problem
detection occurs because the decision maker .izes that previous actions
are not likely to result in the desired goal. As will be discussed
extensively in the chapter devoted to problem detection, we believe that
problems are detected by a comparison of the flow of events from the
decision maker's environment with the expected course of events-- an
actlevent scemario which is created by the decision maker at the time of
taking action. Events which are amomalous, or unexpected in terms of the
decision maker's scenario may be the stimuli for problem detection.

Problem analysis and def inition. Once the decision maker has detected
a problem, the nature of the problem can be identified, and this process
often suggests a possible remedy. If such a remedy is not obvious, the
definition of the problem may be improved by further analysis. Problem
definition in ill-defined problems may involve the identification of goals,
which may be multiple and conflicting, the identification of problem
constraints, and the identification of control variables, or "operators"
which may suggest ways to solve the problem (Newell & Simon, 1972). We
believe that these problem characteristics are organised by the decision

,. maker into what may be termed a "mental model" (cf. Gentner and Stevens,
1983). The mental model is the decision maker's representation of the
decision situation, the mental structure of the problem. It is based in
part on causal schemata (Tversky & Kahneman, 1980) which specify the causal
relationships between actions which manipulate of the control variables of
the problem and possible outcomes of these actions.

Once the problem is defined, the stage is set for act, hypothesis, and
outcome generation. However, we imagine that the process of analysis and
definition continues throughout the time spent working on a problem. If,
for example, undesirable consequences of an act are discovered, this may
stimulate further problem analysis.

Although problem analysis and definition is perhaps the most important
of the predecision processes, we have devoted only one study to it
explicitly, although a number of our studies are indirectly relevant to it.
Problem analysis and definition is not treated separately in this paper
because it was not a major topic in our projects, However, most bf our
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research, in a real sense, was concerned with this topic.

Rypothesis generation. Hypothesis generation is important in two
contexts. In inductive inference tasks it is the process that generates
alternate explanations for data. It is also an important process in outcome
generation. In outcome generation, a decision maker should be aware of
possible states of the world that pay influence the outcomes that result
from a particular action, and often may have to generate these hypothetical
future states of the world in ill-4efined problems. Hypothesis generation
probably is also important in probiem analysis and definition where the
decision maker attempts to generate explanations for anomalous events. The
hypothesis generation process in all of these situations probably involves
similar mechanisms, however, our research has been almost entirely
concerned with generating explanations for data.

as Act and outcome generation. These two processes are treated together,
- as we theorize that outcomes are generated by Lracing the possible

consequences of actions. Ue believe that the decision maker generates
actions by using a mental model which is created during problem aadalysis
and definition. This mental model may include actions that have been used
to address similar problems in the past..In.the case of problems that are
ill-defined in respect to possible actions, the decision maker may choose
to generate additional actions to supplement those that are immediately
suggested by similarities between the present problem and other problems
that the decision maker has previously solved. How this process may occur
is the subject of several studies, in the the present contract, and further
discussion of act and outcome generation is deferred until the chapter
devoted to this topic.

,.,p..
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-WAT 3. A KODL OF THE PROBLEK DICTIOE PROCESS

'The best laid schemes o' mice and men gang aft a-gley"
-Robert Burns (1759-1796)

Problem detection is the least understood of the decision processes,
yet it is one of the most important, as it triggers or initiates the
remaining processes. Decision theorists (e. g. Corbin, 1980) have noted its
importance but have not proposed models of it, nor systematically studied
it. However, several recent theoretical developments in cognitive
psychology and behavioral decision theory have made it possible to create
models of the probler detection process. These developments include the
work on causal scenarios and schemata (Tversky 6 Kahneman, 1980), the
proposal of a simulation heuristic (Kahneman and Tversky, 1971), causality
and cues to causality (Einhorn h Hogarth, 1981), and scripts and plans
(Schank and Ableson, 1977). These new ideas facilitate the development of a
model and taxonomy of problem detection.

In this chapter we develop a working model of the mental processes
involved in problem detection--one that is yet to be refined and revised by
research. Ue then describe the problem detection taxonomy we are
developing by examining our model in-relation to the problem detection tack
environment.

A problem detection model.

Problem detection as a cyclic process. Problem detection cannot be
understood in isolation from the other decision processes. Decision making
is cyclic. After detecting a problem the decision maker decides which
steps to take to correct the problem, and after taking these actions
reenters the problem detection phase in anticipation of the next problem.
Therefore, problem detection can be viewed as the first step in solving the

next problem, but the cognitive information used to detect the new problem
is derived from earlier decisions to take a particular action. The
precursors to problem detection are previous decisions and actions, and any
model of problem detection must start with these precursors as an input.
The first task, therefore, in creating a problem detection model is to
specify the precursors to the problem detection process.

Precursors to problem detection: the plan, and act/event scenarios.
Because decision making is a goal-oriented process (Newell & Sion, 1972),
a precursor to problem detection is the plan (Schank & Ableson, 1977) that
the decision maker creates to reach that goal. This plan is based on world

* .* knowledge such as cause and effect relationships (Einhorr, and Hogarth,
1981), and consists of generic goal-directed actions generated by the
decision maker (10, 12) together with the general effects or outcomes these
actions should produce. The plan is a causal schemata (TveTsky & Kahteman,
1980) that specifies how, in a general way, the decision maker expects to

achieve the desired goal.

Next we assume the general plan is fleshed out. The decision maker

uses the general plan to create a detailed act/event scenario by sirvlat'.g
in imagination a series of actions and events (outcomes) that lead to th,

goal (Kahneman and Tversky, 1981). These scenarios are relatively precise
recipes for reaching the goal--they include specification of the actiors

3.1
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to be taken and their consequences. The act/event scenario is the decision
makers detail24 plan for action. Its existence can be established and its
contents measured in ways we will describe later.

Components of the problem detection process.

The component mental processes of problem detection are summarized and
incorporated into the model presented in the rmainder of this, pection.
This model is a first approximation to the one we intend to develop. Four
components appear logically necessary from an analysis of the problem
detection task. Briefly:

1. Anomaly detection: matching the act/event scenario. The initial
component is a matching process wherein discrepancies between the act/event
scenario and the acts and events that actually occur are detected. The
outputs of this process are acts and events that are anomalous, that is,
are not anticipated in the act/event scenario.

2. Assessing causal reiationships. This is a process in which the
causal relalionships, if any, between anomalous events and the act/event
scenario are established.

3. Assessing relevancy/importance of events. Here the problem detector
decides if the causally-related anomalous eyent is important enough to add
to the scenario to produce a revised act/event scenario.

4.. A goal assessment process. The revised act/event scenario is
examined to see if it still leads to the goal by simulating the effects of
the anomalous event. If the decision maker concludes that chances of
reaching the goal are about the same as in the original scenario, the
anomalous event is dismissed. If, however, the chances of reaching the goal
are reduced, a problem has been detected and a new action is required.

Developing the problem detection model.

Two things will be accomplished in this section. First, notation for
describing act/event scenarios will be developed. Second, the problem
aetection model will be developed using this notation.

Notation for describing act/event scenarios. We next must develop
notation for two important problem detection situations. The first
situation is one in which environmental uncertainty is low and the effects

* of actions quite predictable. For this reason, the decision maker's
scenario consists mostly of actions. In this low environmental uncertainty
case the act/event scenario can be represented:

Act/event scenario - {a, b, c, .... goal),

where a, b, c ... is a sequence of actions leading to the goal. An example
of this type of scenario is starting a car, with a dead battery. Act a
might be moving the car with a good battery next to the problem car, act b
might be opening the hoods of both cars, etc.

However, when environmental uncertainty is high, the representation
of the act/event scenario is somewhat more complicated, because both
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actions and the uncertain events resulting from these actions should be
represented. Imagine that a doctor is using penicillin to treat a patient
with a bad case of pneumonia. The action would be to administer penicillin
to the patient ano the doctor's expectation is that the patient will
improve. Possible events include the patient's improvement, lack of
improvement, and an allergic reaction to penicillin. In this case the
act/event scenario might be as follows:

Act/event scenario = { a->e(a), b->e(b)..., goal),

where a is the act of administering penicillin, the symbol "->" denotes
that an event is caused by an act, e(a) is the expected event (the patient
improves), b is the act of keeping the patient in bed for several days,
e(b) is the further reduction of the lung infection, etc. Thus the scenario
might be represented in the decision maker's mind as, "When I give the
patient penicillin the pneumonia vill be cured. Then by keeping him in bed

-* for several days I can completely cure him."

Arranging the components into a model. Although atask analysis of
r. problem detection suggests the above component processes are necessarily

involved, the exact number of components that the model should have, and
the order in which they are performed, is uncertain without research.
Perhaps some components could usefully be combined with others to simplify
the model, and the order changed. The model, shown in figure 1 below in
schematic form, is a reasonable first approximation of the problem
detection process to use until more evidence becomes available. The
remainder of this section elucidates this working model.

A tentative model of problem detection

Events from the environment

Anomaly detection stage----- > "no problem"

Causality assessment stage ----- > "no problem"

Relevance/importance assessment--> "no problem"

Goal assessment .------ > "no problem"

"problem"

Figure 1. The tentative model, with its stages and exit
points. Processing resumes, at the anomaly

'a detection stage if an event is classified as "no
problem".
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r4' A tentative arrangement .of the stages in the model is shown. Events
from the environment are either passed from stage to stage for further
processing, or classified as "no problem" in which case processing returns

. to che anomaly detection stage. Problem detection occurs if an event passes
through all four stages. If a consistent event is in the scenario,
processing does not go beyond the anomaly.detection stage. Inconsistent
events produce problem detection errors if they exit prior to the last
stage. We now turn to detailed discussion of what takes-place in each
stage.

Anomaly detection. Assume, as described earlier, that a goal has been
set, a plan constructed, an act/event scenario, generated from the plan, and
the scenario put into effect by taking the first action in the sequence.
The initial anomaly detection stage consists of step by step matching

( between the nominal course of events--the act/event scenario--and the
actions and events that actually occur. If the observed act or event
matches the appropriate act or event in the scenario, the event is
classified as confirming-as events are following the expected course--and
the matching process continues. If, on the other hand, an actual event or
act does not match, further processing is required to analyze the anomaly.
For example, the detection of an anomalous event might occur when the e(a)

*event from the scenario is compared to the actual event E'(A) as follows:

Penicillin act/event scenario - {a->e(a), b->e(b),... goal),

Actual actions/events - A, E'(A).......bL '

anomaly detection: I

vhere the actual course of events is indicated by capital-letters. An
anomaly would be detected :when the doctor compared the event expected in
the act/event scenario,;e(a), with the event that actually occurred,
I.(A), which is the unanticipated, anomalous event of the patient
developing a rash. The -event in questiob--the -rash--may not have been part
of the act/event scenario, and hence may involve a problem. On the other
hand the rash may not be due to the penicillin but to some other cause. If
the anomaly is detected, processing is transferred to the causality
assessment stage. However, if an event is classified as confirming,
monitoring continues (see figure 3.1).

Assessing causality. Once an event is classified as anomalous rather
than confirming, its causal relationship to the act/event scenario is
examined. In terms of the previous example, the doctor would search for a
causal relationship between penicillin administration and the rash. One cue
to possible causality (Einhorn and Hogarth, 1981) is the temporal proximity
of penicillin administration and the subsequent rash. Furthermore, the
doctor's understanding of drugsmayor may not include rash as a symptom of
drug reaction. The doctor may decide there was a causal relation or there
was not.

* Causality determination makes heavy use of the decision maker's
knowledge of cause and effect relationships. The interpretation of events
and the expected consequences of acts all involve the problem detector's
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interpretations of causality, and these interpretations are made using
causal knowledge. As Einhorn and Hogarth (1981) have noted, causes are seen

as differences in a causal field, and users with different causal fields
may attribute different causes to an event. The patterns of causality are
complex. Several events muy be sufficient to cause change, in which case
there are multiple possible causes. Other events may be necessary but not
sufficient, in which case all of the events must be present to cause
change. Events may also be seen as indirect causative agents. For example,
we might believe that the patient contracted pneumonia because he worked
too hard and became exhausted.

Assessment of relevance and importance. If the doctor concludes there
is no causal connection between penicillin and the rash, then we assume the
event is dismissed as irrelevant and the doctor returns to the first stage
of monitoring and anomaly detection. Note that if the the doctor was

-wrong, and the rash was a symptom of an acute reaction to the penicillin,
he or she has failed to detect a problem.

If, on the other hand, a caudal connection between the penicillin and
the rash is found, the doctor must assess its relevance and importance. Is
the rash a minor result of the penicillin, or does it represent an allergic
reaction which would be exacerbated by continuing treatment? If the doctor
concludes the latter then the actlevent scenario i revised to incorporate
this new conclusion.

Goal assessment by simulating the effects of the anomalous event. The
next step is to determine if the revised scenario is still consistent with
the goal of recovery. The donsequences of an allergic reaction are
simulated to determine the likelihood of reaching the goal, given the
revisions of the scenario. The doctor may conclude the goal of recovery
can still be reached despite the risk, and continue to administer

* ' penicillin. However, the doctor may conclude that the goal can not be
reached by this route because the patient is too allergic to penicillin to
warrant its continued use. Having detected the problem the doctor must
abandon or modify the act/event scenario and resolve a new decision
problem--how to treat a patient who has pneumonia and is allergic to
penicillin.

Types of problem detection failures. According to our model,

successful problem detection occurs when a decision maker classifies an
event as anomalous, determines that it is causally related to the scenario,

revises the scenario appropriately, and by means of a simulation using the
• new scenario determines it will be difficult or impossible to reach the

goal.

Our model also predicts several ways in which a decision maker can
fail to detect a problem. First, an anomaly may go undetected. Our past
research on hypothesis generation (9) suggests many anomalous events are
not represented in act/event scenarios and hence may not be recognized as

% Psignificant. For example, the doctor may not view the skin rash as
significant because his scenario does not contain rash as a possible
consequence of administering penicillin.

Second, even if the event is classified as anomalous, its causal
* ' connection to the scenario may go undiscovered and the event dismissed as
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unimportant, leading to another type of failed problem detection.

Third, an event may be classified as anomalous and causally related,
but the decision maker may not believe it 'relevant or important enough to
warrant revising the scenario, and so may make an error of another type.

Fourth, even though the problem detector has revised the scenario, the
simulation process, where the effects of the change in the scenario are
assessed, may be faulty. An erroneous inference may be made that the
anomalous event is consistent with reaching the goal, again failing to
detect the problem.

A problem detection taxomomy.

A problem detection taxonomy can be produced by simultaneously
considering the types of environmental events that can produce problems,
with the types of- errorg the problem !detector can make. This taxonomy
should be of great value in research, and should also be of value
independently of our theory, as a way of analyzing problem detection
performance. Before the taxonomy is described we need to introduce
additional notation and define the types of environmental events that can
produce problems.

Modeling the environment. In the examples of problem creation and
failed problem detection to be presented later we will be discussing acts
that may produce a series of events. These sets of acts and events that
would lead to the goal are represented as act/event scenarios:

Actievent scenario - (a->(el. e2, e3), b, c, ... goal),

where a, b, and c represent acts by the decision maker, the set (el. e2,
e3) symbolizes events 1, 2, and 3, and the arrow -> indicates the events
are consequences of act a.

The act/event scenario distinguishes between actions and events
because this is important in our problem detection model. However, an act
is a special kind of event, an event created or produced by the problem
detector. In terms of the causal relationships in the environment, the
distinction between acts and events may not be necessary, but it is
important when talking about our problem detection model.

A further distinction can be made between situations where the actions
and events must occur in a certain sequence, and situations where the

* sequence is not important. For example, some of the actions in starting an
aircraft engine should be performed in a logical order, while others can be
performed any time before the starting switch is thrown.

Environmental conditions that can produce a problem. The minimum
act/event scenario consists of those actions and events that are necessary
to reach the goal. If acts are considered to be special types of events,
there are only three environmental situations that can create a potential
problem. These are 1) a necessary event that is omitted from the scenario
(an omission), 2) an event is added to the scenario (a commission) that
diverts the scenario, and 3) a sequencing error where events occur in the
wrong order. In all three situations the goal cannot be reached because the
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necessary chain of cause and effect happenings leading to the goal has been

broken. The third case can be thought of as a simultaneous omission and
commission error, in which an event is omitted from the causally correct
position in the scenario and inserted (committed) at an incorrect location.

* For example, striking a match before closing the cover is a minor
Ssequencing error.

Producing a problem detection taxonomy by combining a problem
detection model with environmental conditions. A problem detection taxonomy
can be produced by combining the problem detection model with the three
environmental conditions described above. As there are four stages to the
model and three environmental conditions, the factoral combination produced

* has 12 cells (four stages by 3 environmental conditions). For the sake of
expositional simplicity, this taxonomy will not display other important
variables, such as the difference between acts and events.

-Table 3.1: An abbreviated problem detection tazonomy

Problem detection model stages:

A. B. C. D.
Relevance/

Anomaly Causality importance Goal
assessment assessment assessment assessment

Omitted Act A. --> A
or B. --.-..... > B

Absent Event C. - ----- -- ------ > C
-(CASE ) D. -> I

,°%

" Comitted A. --> A
Act or B. --......... > B

-I. Intruding C. ----.....-- ------ -> C
Event D. --------- > D

(CASE 2)

Incorrect A. 0-> A
equences B- ------------ >.B

of Acts C. -- - - ->C

or Events D. ------ >--- D
(CASE 3) l I I I

(CASE 4) (cASE 5) (CASE 6) (cASE 7)

Note: Case numbers are arbitrary. Cases were selected from
a much larger set to illustrate each of the three rows and
each of the four columns of the taxonomy. Arrows terminate
at the model stages where problem detection fails.

Table 3.1 is the abbreviated version of the problem detection
taxonomy. Shown across the top of the table are the four model stages:

3.7

.* . . . . .



, , _~~. , . . . . ,. . . . . , . . -= . , -. . . . . , . . . .• . " . . .

anomaly detection, causality assessment, relevance/ importance assessm nt,

and goal assessment, where the effects of the anomalous event are

simulated. The major headings in the rows are the three environmental

conditions that can produce problems: omissions, commissions, and incorrect

sequences. The directed lines (arrows) show the places where problem

detection can fail at the various stages of the model. The notation A, B,

C, D refers to the depth of processing an event receives before it is

correctly or incorrectly classified. The Case notation (e.g., Case 1)

refers to examples of these problem detection errors, which will be

presented after the table as illustrations of its contents.

Examples of the taxonomy gained from accidents.

One useful way of illustrating this taxonomy is to discuss cases in

which problem detection failed. Perhaps the best documented sources of

failed problem detectiou are accounts of accidents. Although we are not

primarily interested in accidents per se, by studying. tb9eccounts we can

further retine our problem detection model and taxonomy. First we give

* examples of each of the major types of environmental conditiops:

Case 1. Errors of Omission. Omission errors occur when a necessary
act or event is omitted from the scenario. Omission errors are frequent,

- and many of these problems could have been detected.3g time to recover from

the error. For example, a plane flew 250 miles off course in the North

• .Atlantic because the operator of the inertial navigational system forgot to

enter a coordinate into the navigational computer. In a second case, a

corporate jet crashed on take-off because the pilot forgot to release the
parking brake.

Case 1. Omission error:

Act scenario a b, c, d.... goal)
actions ={A, CaD ....

error--action 3 was omitted.

Case 2: Errors of commission. Commission errors are also frequent.
They occur when an act or event not present in a scenario occurs and causes
a deviation from the ideal path to the goal. For example, a man was
cleaning his clothes with naphtha (a flammable solvent) and lit a cigarette

-" in the midst of the fumes. Other commission errors occur when an incorrect
action is substituted for a similar correct action. During Uorld War II,
there was a rash of training accidents involving lowering the landing gear

when the plane was on the ground preparing for take-off. The pilot pulled
the lever raising the landing gear rather than pulling a second, adjacent
lever that lowered the flaps.

3
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Case 2. Comission error:

act scenario - (a, b, c, de....., goal)
actions - IA* B, Z, C....

error-action Z was performed

1. Case 3: A sequencing error. The sequencing error is interesting. In
this case the decision maker performs the correct actions but in the wrong
order. An incorrect sequence for lighting a gas stove is to turn on the gas

. and then strike a match.

* Case 3. Sequencing error:

Act scenario - { a, b, c, d.... goal)
actions - A# C& 3p De

error--action C was perfomed out of sequence.

"zamples of failures atithe various model stages.

The following four examples are cases where problem detection failed
due to errors in one of the four model stages. These examples are also
illustrations of various environmental cases:

Case 4: Failures of the anomaly detection stage. This example occurred
when an expected event did not occur. Before the recent crash of a jet
into a bridge when taking off from National Airport in W-ashington, the jet
was "de-iced" (Act A), and the pilot expected el (removal of ice from
wings). The pilot probably did not confirm that the ice was removed (El),
and the plane crashed on take-off (Act 3) because the pilot did not detect
the anomalous omission.

.%

Case 4. Failure to detect an anomalous event:

i Act/event scenario - I ->{ el, e2 ), b, .... goal)
Actual actlevents - { A->{ 32 ), 1, ....

error-act 3 was performed when eve~t 31 was
absent (i.e., act A did not achieve the desired effect).

Case 5: Failures of the causality assessment stage. During an
overhaul of an aircraft carrier a welder used a torch to cut the bolts
fastening part of the aircraft launcher to the deck. The bolts, red hot
from his torch, fell into a ventilation duct (an anomalous event). Unknown
to him, the duct had been filled with trash due to a missing cover, and the

3.9



! ,_1%V q-% _C. VW.7 :-. 47 . .

.. bolts started a fire. Evidently he did not see a causal relation betweenr.- hot bolts in a metal duct and fire, since metal does not burn.

Case 5. Failure of the causality assessment stage:

Actleveut scenario - (a->{el. e2} ..... goal)
Actual act/events - 4A->{EI 9131,;12)....

Event E13 was unanticipated, misclassified as
causally unrelated and consistent with goal.

Case 6: -Failure of the relevance/importance stages A pilot had

problems with his fuel gauges and had them repaired. Resuming his flight,
he ignored a sudden drop in the gauges and ran out of fuel a few minutes
later. He apparently detected the anomaly and classified it as causally
significant, but the existence of an alternative explanation (the gauges
are malfunctioning again) caused him to classify it as irrelevant.

Case 6. Failure of the relevance/importance stage:

Act/event scenario - {a->{el, e2)..... goal)
Actual act/events " {A->{EI, E13, 32)....

Event E13 was unanticipated, classified as
causally related but misclassified as irrelevant.

Case 7. Failures at the goal assessment stage. Captain Robert F. Scott
of the British Navy encountered a series of setbacks in his race for the
South Pole. His comparison of his act/event scenario to his actual journey
probably yielded many anomalous events such as distance covered, physical
condition of the party, and remaining food. He must have realized the
causal significance of these anomalous events and revised his act/event
scenario accordingly, yet he persisted. One reason for his persistence may

- have been errors in his goal assessment using the revised scenario. He may

" have overestimated the probability of reaching his goal and returning.
Alternatively his assessment may have been accurate, but he was determined
to continue whatever the odds.

Extended examples of problem detection failures.

It should be apparent by now that problem detection can only be
understood by considering both the problem detection model and the problem
environment simultaneously. lie include three extended examples that serve
two purposes. First they make the point that one problem detection error

Ccan lead to another, and second they illustrate psychological processes notyet discussed.

The first mishap occurred during a flight when icing conditions were
encountered. Airspeed in a modern jet is sensed via a pitot tube which
leads to a pressure transducer. Pressure is translated into airspeed in the

3.10

... ... .. -.. -..--.-.- •......, -.. ' . ...- ,... - .C . - --. .. : -:- :



cockpit display. The pitot tube de-icer was not tutrned on (an omission,
failure of anomaly detection, point A in table), and the pitot tube became
partially blocked by ice. The pilot, seeir.g the airspeed dropping and
believing the jet was about to stall, vent into a dive (a commission,
incorrect problem detection at point D in table). The engineer, alarmed by
airspeeds that were apprcaching the design limits of the aircraft, made a
successful problem detection and corrected the pi'.ot's error of omission by
turning the de-icer on. This incident is of particular interest because the
pilot's actions would have been appropriate it the indicated airspeed had
been accurate, but because of the false alarm over the earlier omission,
the wrong action was taken.

% A second example illustratin, the importance of having a correct
scenario is found in the following mishap dtiring a right landing. A pilot

46 .) who had never landed at Cairo airport made a carefel study of the route
book for runway 05 and reassureo himself that the arrroach to the runway
was flat. Nearing the field, he turned onto the wron6 runway, runway 34 (a
commission error, anomaly detection failure, point A in table). To his
surprise, he immediately lost sight of the airport li$hts. 9 e continued
his approach despite being unable to see the rtnway lights (absence of an
event, causality assessment failure, point B in table), and flew his
aircraft into the top of a high sand dune which had been ol-scuring the
lights. The accident was attributed to the pilot's rrepar-tior to land on
runway 05 (involving a flat approach), his mistaken use of runway 34 (for

, which a flat approach was inappropriatc), and nis failure to pull up when
loosin& sight of the runway lights. Evidently the pilt used the wrong
scenario for runway 05 and attributed his failpre to see thec lights to a

-, cloud.

A third mishap illustrates hov events can be miirterpreted as
consistent with an event scenario wnen i3 ftct they suggest , problem. An
airliner was flying from Tripoli to a swal town, &anc, to the south. As

,.a Kano had no radio beacon, the navijator usen GcaA reckenig based on
magnetic and gyro compasses anu star sightiLns. Ar initial error of
commission (anowaly detection failure, point A iL table) occvrred when the
navigator set 60 degrees magnetic declination into the VOCrctic conpese
rather than the correct 6 degrees. At t-.ia point tie pilot eetected the 54
degree discrepancy between the magnetic and gyro compnes (correct problem
detection), and asked the navigator to take a star sightin&tc t cecie which
of the two compasses was correct. The ndvigator distrvattd the gyro conpaso
and used a dead-reckoning plot based on the magnetic coupase to select
stars for the sighting,. Then he faikL to aetect a protlom urcn making the
sighting, when he misidentifies the sc nro in the narrow field of view of
the astro compass and concludeG his signtings were in agreemet with the
magnetic compass (a case not diacussed in the t.xoromy, resulting from
perceptual confusions).

Finally, when the dead-reckoning and astro ntrigaticr. svggetted they
should be near Kano, the pilot wane a probler detectirr er-or when the
expected thunoerstorms were not seen (omiseir., failure of
relevance/importance stage, point C in trtble. Thirty riputes later the
engineer made the correct problem detectin by ixtnt4±yiuv the error in
setting the compass, but the pliie ran out zfiu sne. r.ac P cresh landing
in the desert after flying almost to the East 0%ast of Africa, 54 degrees
off course.
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Correct problem detection. In discussing cases where problem
detection fails we have focused on what can go \7rong with the processes,
but it is important to emphasize that problems are successfully detected
most of the time. Failures, when they do occur, provide interesting
insights into the problem detection process in much the same way that
perceptual illusions illustrate perceptual processes. However, failures may
not occur frequently enough to form the sole basis for a study of problem
detection. liuch can be learned by using response time to study successful
problem detection. For these reasons it is very useful to study latencies
-as well as errors in the problem detection research.
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,-AFU 4. A 1TPOTHESIS GEIKIATION MODEL AND RElATED REBARCH

The hypothesis generation task.

An earlier contract was devoted to the study of hypothesis

generation, i.e., the process by which the decision maker generates the

relevant states of the world. In terms of problem structuring, the decision

maker should be able to generate the possible states of the world that may

affect the outcoraes of any acts that are taken. For some problems this task

may be easy. The decision maker may generate hypothesized states of the

world related to a problem which has been experienced before. In these

situations possible hypotheses may be readily retrieved from memory because

they are few in number and routine in nature. Another important class of

• ?..: problems exists where hypothesis generation is a crucial component of
problem structuring. Examples of tasks which require hypothesis generation
include medical diagnosis, automotive and electronic trouble shooting, and
the scientific process itself. Tasks in this category are particularly
difficult to solve when the number of possible hypotheses is large and the

decision maker cannot rely on past experience to narrow the field to
oeveral obvious hypotheses.

It is particularly important that the decision maker include the

actual state of the world in the problem structure because any subsequent
decision that fails to consider that state of the world may be wrong. For
example, if your auto mechanic fails to entertain the hypothesis that a
dirty carburetor is responsible for your car's bad performance, you may pay
for a series of adjustments or part replacements that do nothing to correct
the problem. Similarly, if your doctor fails to consider the disease that
you actually have, the whole treatment regime may be inappropriate, or even
dangerous to your health. Therefore, one important part of the hypothesis
generation task is the inclusion of the true state of the world in the set

S.. of possible hypotheses. It is important that the set of hypotheses
V... generated by the decision maker should be as complete as possible. Ideally,

the set should be exhaustive; however, a practical decision maker usually
neglects improbable hypotheses because these states of the world appear so
unlikely that they can safely be neglected.

The hypothesis set that the decision maker creates should contain
plausible hypotheses. The construct of "plausibility" includes the notion
that for a hypothesis to be included in the set of hypotheses it should be
sufficiently probable to be worth further analysis. This does not
necessarily involve an assessment process as detailed and thorough as is
typically implied by the term "probability assessment." All that is
logically necessary at the early stages of problem structuring is that the
decision maker make a rough "go/no go" decision in regard to each
hypoth~esis. Hypotheses that pass this crude plausibility test may be more
carefully assessed in later stages of decision analysis.

While it is likely that plausibility assessment and probability
assessment share common elewents, there are a few clear differences. The
first major difference is in the nature of the task requirements. In a
probability assessrment task, assessments are usually made about the
relative likelihood of a set of specified hypotheses known to the decision
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maker. In a hypothesis generation task, hypotheses are evaluated with
respect to whether or not they should be considered further. This
evaluation is complicated by the fact that the evaluation should be
relative to both previously-specified hypotheses that the decision maker
may have and unspecified hypotheses that are yet to be generated by the
decision maker. These task differences suggest that calling the process of
deciding if a hypothesis should be included in the set of hypotheses
"probability assessment" may be prewiature and misleading because of the
task differences between the two processes. Ile do not know at this tiie if
the same psychological processes are used in both types of assessment,
although it seems quite certain that both processes share common elements.

Hypothesis 6eneration tasks also have the characteristic that
generated hypotheses should be consistent with any available information.This information may be specific data or knowledge about the task.
Obviously, hypotheses that are inconsistent with the available evidence
should not be considered. Information provided by data and the task has a
second importait role, since it serves as a basis for the memory search
processes described in the next section. Although the emphasis will be on
memory search processes, the importance of the data as constraints to the

"-',"logical possibility of hypotheses should be kept in mind.

The hypothesis generation process can operate in a number of
different ways depending on the task requirements. For example, during a
"brain-storming" session, decision makers may be asked to generate anyhypotheses that come to mind irrespective of their plausibility or
implausibility. In another situation, the decision maker's task may be to
generate all hypotheses that are logically consistent with the data, even- though some of the hypotheses are unlikely. In a third situation, the
decision maker's task may be to generate a set of plausible hypotheses and
to be concerned with whether or not each hypothesis in that set is
sufficiently plausible to be included as a candidate for subsequent
decision analysis.

Overview of the hypothesis geueration model.

The hypothesis generation model that has been developed has three
component,- or subprocesses. The first subprocess is an executive process.
The executive subprocess controls hypotheses generation according to the
demands of the task. It initiates memory searches and controls plausibility
assessment. The memory search subprocess is responsible for both retrieving
hypotheses from memory, and for furnishing information necessary for

" plausibility assessment. The third subprocess is that of plausibility
assessment. In this subprocess hypotheses may be checked to see they are
logically consistent with the data. More sophisticated plausibility
judgments may also be made. The plausibility assessment subprocess decides
if a hypothesis is sufficiently plausible to warrant further processing.
Figure 4.1 shows this model in summary form. In the three sections that
follow, each of the subprocesses and their experimental results are
discussed.
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Figure 4.1. Major subsystems in hypothesis generation model.: .1

,ypotbesis retrieval from nemory.

When the hypothesis generation process begins, the decision maker
has an empty hypothesis set which must be populated. A reasonable goal is
to develop a set of hypotheses that is as complete as possible. To
accomplish this end, hypotheses must be retrieved from memory. The model
assumes that available data and other task information are used to search
memory. Memory is assumed to be organized in a semantic net (1, 3).
Searches are made for each datum. If a hypothesis consistent with the
available data is encountered in this search process, then it is tagged in
memory to reflect this encounter. When a hypothesis accumulates a critical
number of tagS, the executive notes this fact, and the hypothesis is
retrieved from memory for further processing. A detailed discussion of the
memory search subprocess has been provided (1), but some of the results
obtained during an evaluation of the model are of greater interest.

The first point of interest is whether or not the search and
retrieval process produces candidate hypotheses which are logically
consistent with all data. An analysis of the hypothesis generation task
suggests that this should be a minimum requirement of any hypothesis
included in the final hypothesis set. When does consistency checking occur?
Does the memory search subprocess necessarily produce hypotheses that are
logically consistent with all data or is consistency checking performed
after retrieval from memory? Perhaps a hypothesis must be tagged by all
data before it is retrieved by the executive. One assumption of this
version of the model is that a hypothesis would not receive a tag from a
datum if it is inconsistent with that datum. In a second version of the
model it might be assumed that any hypothesis encountered in the memory
search may be retrieved for further processing. Under this assumption,
retrieval could follow from a single tag.

4.3
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:. The "one-tag" version and the "all-tag" version are limiting cases
of the tagging model. A task analysis suggested that it was unlikely that
the "one-tag" version would be correct. If a hypothesis suggested by any of
the data is retrieved for further processing, then using the "one-tag"
version, the decision maker would have to process a large number of
hypotheses most of which would be inconsistent with one or more data. If,
however, all hypotheses suggested by the data had to be .tagged.byall data,
then the decision maker would retrieve very' few hypotheses, and would
probably fail to retrieve many relevant hypotheses. It seems reasonable to
assume that the decision 'maker should choose a strategy that lies :somewhere
between these two extremes.

The tagging model was designed so that the criterion number of tags
, was a free parameter, and this model was used as a measurement tool to

address this issue. A study (1) was conducted where dec:ision makers
* retrieved hypotheses from either a set of six data,. or subsets of these

data which consisted of three data, or only one datum.

The criterion number of tags for retrieval to occur was estimated,I and was found to be between two and three tags for these data.
Subsequently, we have shown that this conclusion does not depend on the
assumptions of the tagging model; other similar models would yield the same
conclusions.

The major implication of this result is that hypotheses are
retrieved from memory usin& two or three data as retrieval cues. Therefore,
retrieved hypotheses are at least partially consistent with the available
data. These results also suggest that the memory search process may produce
hypotheses that will be discarded in subsequent assessmuen because they are
not logically consistent with the rest of the data.

Recently, Thompson (1983.) performed an extensive modeling effort in
this area. His results c&used him the reJect models similar to our "one-
tag" and "all-tag" models as we di.. The model he favored, called the
"Activation Ilean" model is a Thurstonian Model where the subject is assumed
to retrieve a hypothesis in response to multiple data if the mean
activation from the multiple t'as exceeds a criterion. lis Activation Ilean
model seems to fit the data well, but unfortunately he did not provide any
relative comparisons between his model and ours. As both his model and ours
seem to be excellent fits for their respective data sets, the choice
between models will have to await further research.

.. A second point oi interest deals with the efficiency of the
hypothesis retrieval process. In order o study this process, the
retrieval performance of the subjects was compared to a "mir ime lly-adequate
hypothesis set" developed by tzie experimenters. This minimally adequate
hypothesis set consisted of the t.hree most-plousible hypotheses which the
experimenters felt should te included in an "adequate" set of hypotheses
generated by the subjects. The set for each problem was chosen
conservatively and many other plausible hypotheses were excluded. Only
19.9 of the subjects were able to retrieve these ttree hypotheses. Ile also
explored the effect of relaxin6 the definition of aocquatc performance. We
found that 50% of the subjects were able to retrieve two out of three of
the "minimally adequate" hypottieoes, while 92% oi the, subjects were able to

..
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retrieve one of the three. This result was our first indication that the

hypothesis generation process was less than adequate, and it has been

replicated many times using more objective criteria of performance. Similar
results are discussed in chapters 5, 6 and 7 of this monograph. The results
discussed here are important because they suggest that the memory search
process is involved in the deficiencies in hypothesis generation reported
throughout the research on hypothesis generation.

Checking hypotheses for logical consistency.

Results from the tagging study (1) of the memory search model
suggest that the decision maker will often retrieve a hypothesis from
memory using several data. This newly retrieved hypothesis may or may not

,.' be consistent with all of the remaining data that were not used in its
retrieval. A consistency checking process may exist in which the decision
maker checks the newly-retrieved hypothesis for logical consistency with
any remaining data. Such a process should be relatively fast, as compared
to hypothesis retrieval. Using the hypothesis as a retrieval cue, the

decision maker should perform a high-speed memory scan to examine whether
the hypothesis is consistent with the remaining data. For reasons of
efficiency, the consistency checking process should be self-terminating,

-. ie. the consistency checking should stop if a datum is encountered which is
inconsistent with the neoly-retrieved hypothesis. If a hypothesis passes
this consistency check, then it is logically consistent with all of the
data, and it has met the minimum plausibility requirements. Plausibility

assessment may stop at this point, or it may continue, depending upon the

demands of the task. Figure 4.2 shows the relationship between hypothesis

retrieval and consistency checking in our model.

A series of experiments (3) was conducted to investigate the nature
of consistency checking. In the first experiment, we asked whether or not
consistency checking exists. Subsequent experiments were conducted to

examine the speed of consistency checking relative to hypothesis retrieval,
and whether or not consistency checking is a self-terminating process.

The first experiment was an attempt to demonstrate that consistency
checking exists. An instructional manipulation was used in which subjects
were instructed to either respond with the first hypothesis that occurred

to them, irrespective of its consistency, or were instructed only to

respond with a consistent hypothesis. Hypothesis generation problems
containing various numbers of data were used. We predicted an interaction
between the time necessary to generate a hypothesis in the two conditions
and the number of data in the problem. While large differences were
observed between the two conditions, the interaction was not significant.
We believe that the inconclusive results of this experiment were due to the
subjects' inability or unwillingness to respond with the first hypothesis
that occurred to them even though they were instructed to do so.

In a study which was performed after the original technical report

(3), the question of the existence of consistency checking was investigated

again. In this study a somewhat different approach was used. Subjects

were asked to generate consistent hypotheses in response to data.
Immediately after they generated a hypothesis, they were shown a list of

inconsistent hypotheses that had been generated by another group of

subjects. Subjects scanned the list of inconsistent hypotheses, and
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identified any that had "crossed their minds" during hypothesis generation.

It was estimated that subjects retrieved an average of 1.83
inconsistent hypotheses before they retrieved their first consistent

hypothesis. This experiment contained a manipulation to control for the
obvious demand characteristics. Subjects may have picked hypotheses from
the list to please the experimenters. It is unlikely that these results
could be explained in that way. It was concluded that subjects do check
newly-retrieved hypotheses for consistency, and that inconsistent
hypotheses are discarded at this time. These results also add support to

V the conclusion that memory is searched using only part of the available
data. The memory search result implies that inconsistent hypotheses are

retrieved from memory, and this consistency checking experiment
demonstrated that inconsistent hypotheses are retrieved from memory and are
then discarded.

.The next experiment in this series (3) addressed our prediction
that consistency checking is a more rapid process than hypothesis
retrieval. Two experituental conditions were compared. Subjects in condition
one generated hypotheses in response to varying amounts of data. Subjects
in condition two were given the hypotheses that the first group had
1enerated, and were asked to check them for consistency using the same
data. Using a Sternberg memory search procedure (3), the time to process
each additional datum was estimated. Subjects who generated hypotheses took
1.8 seconds per datum, while consistency checking subjects were able to
process each datum in .7 second, i.e. between two and three times faster
than hypothesis generation subjects.

The final experiment in this series examined the self-termination
prediction. Subjects were provided with a hypothesis and were asked to
check three-data problems for consistency with respect to that hypothesis.
The position of a disconfirming datum in the data set was varied for
problems where the hypothesis was inconsistent with the data. Subjects
responded faster when the disconfirming datum was earlier in the sequence
of data than when it was later. This result is consistent with a self-
terminating process. The results of the experiments investigating the

existence of consistency checking suggest that subjects retrieve hypotheses
which are found to be inconsistent with a set of data. We believe that

consistency checking occurs in the hypothesis generation process and that
.%5 subjects tend to retrieve hypotheses in response to only part of the

available data. Thus, the results support the predictions of the partial-
retrieval consistency checking model of hypothesis generation rather than
the alternate retrieval model which assumes that subjects retrieve

consistent hypotheses using all data as retrieval cues.

The results of experiment two of this series demonstrated that less
time is needed to process an additional datum during consistency checking
than during hypothesis retrieval. These results are consistent with the
predictions based upon the search properties of hypothesis retrieval versus
the verification properties of consistency checking. Experiment three of
this series provided evidence that consistency checking is a self-
terminating process.

These results are important for an understanding of the hypothesis
generation process. They more clearly define the role of memory in
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Upon retrieval, hypotheses are checked for logi'dal coi*tiAt~n Y with any

remaining data using a high-speed semantic verification process. If a

logical inconsistsrcy is found between a hypothesis and a datum then

processing stops,..and.the hypothesis is labeled as inconsistent. If,

however, the hypothesis survives the consistency checking process, then

further processing can occur depending on the task demands. The consistency
checking process is faster than the retrieval process because retrieval
involves a search for hypotheses that are suggested by several data,
whereas consistency checking involves verifying semantic relationships
among a hypothesis and data that are already active in memory.

Hypotheses that survive the consistency checking process have met
the minimal task requirement for hypothesis generation, that of logical
consistency with the data. They are not necessarily plausible hypotheses;
plausibility can be established by further processing if the task requires
this type of assessment.

Our use of the term "consistency checking" has been solely confined
to high-speed semantic verification. We do not intend to imply that other
processes which might be called "consistency checking" do not exist. Thus,
a scientist may spend months determining if a hypothesis is consistent with
data. Thia is not t.be process studied here, and this distinction becomes
.learer if a scientist's..work is termed "hypothesis assessment." We have

studied the early phases of the hypothesis -generation processy and we
believe that .n the first few seconds of hypothesis generation a hypothesis
is retrieved from memory using. part of the dAta and then checked. for

consistency with the remainder of the data.

Plausibility assessment of genmerated hypotheses.

After a hypothesis is retrieved from memory and checked for logical

*. consistency, further processing may occur to determine if the hypothesis is
sufficiently plausible to be included in the set of hypotheses that the
decision maker is entertaining. Secondly, the decision maker must decide if
more hypotheses should be included in the set of hypotheses, or if the set
is complete enough to be satisfactory. Once the set is sufficiently

*populated with hypotheses, attention can be turned to other aspects of
problem structuring. This task analysis suggests that the decision maker
should have some sensitivity to the plausibility of both individual
hypotheses and the collection of hypotheses called the hypothesis set.

As discussed previously, the task of estimating the plausibility of
hypotheses is somewhat different than a probability or odds estimation

" task. The task of the decision maker in hypothesis generation is to
populate an empty hypothesis set; whereas, in probability or odds
estimation the task is to estimate the relative likelihood of an existing

set of specified hypotheses. The probability estimator, for example, need
only be concerned with the relative likelihoods of a set of enumerated

Oypotheses. The hypothesis generator, on the other band, must judge a
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specified hypothesis that has just been retrieved from memory against a
diffuse unspecified set of hypotheses that potentially might be included in
the hypothesis set. Before the plausibility of a hypothesis can be
established, it must be compared to other alternative hypotheses which may
or may not be available in memory. Thus, plausibility assessment would seem
to be much more formidable than probability or odds estimation, and one
might naturally expect that subjects" plausibility assessments will be
found less accurate. This kind of judgment is analogous to the difference

4 between absolute and relative judgments in perception where it is commonly
known that relative judgments arq easier to make than absolute judgments.
The plausibility assessor may be iaking a judgment about a hypothesis in
the absence of other hypotheses.. As the hypothesis set becomes more
populated, plausibility and probability assessment become more similar in
nature, and for fully-populated sets the tasks become identical. The same
argument holds for judgments of collections of hypotheses where the task is
to generate a set of hypotheses which is as complete as possible. An
optimal decision maker should continue to generate hypotheses until they
believe that the collection of specified hypotheses equals the set of all
possible hypotheses (neglecting "cost of thinking issues"). Figure 4.3
shows our model of the hypothesis assessment process.

The first research concerned with hypothesis assessment was an

early study done by Gettys and Fisher (cite4 in 7) which was not a formal
part of the contract on hypothesis generation. This study was devoted to
the executive control of the hypothesis generation process, and it
investigated the rules for deciding if a particular hypothesis or
hypothesis set is plausible. Of particular interest in this study was the
relationship between these rules and the memory search process. It was
found that additional hypotheses were most often generated when data were
presented which disconfirmed the set of currently-held hypotheses. The data
were examined to see if a fixed criterion of plausibility was used to admit
a newly-generated hypothesis to the current set of hypotheses, No evidence
for such a fixed plausibility threshold was found. Instead, subjects seemed
to be admitting hypotheses into the set only, if they were close competitors
with the most plausible hypotheses that had already been generated. This
behavior was characterized as a search for "leading contenders" rather than
a search for an exhaustive set of hypotheses.

The first study in this contract examined the question of whether
or not subjects could evaluate the plausibility of hypotheses. Of interest
were the plausibility estimates subjects made concerning sets of hypotheses
differing with respect to plausibility or completeness. Subjects were given
sets of hypotheses which varied in plausibility, and were asked to judge

5- both the plausibility of each hypothesis individually and the collection of
hypotheses. The judgments included estimates of the plausibilities of both
specified hypotheses and the diffuse set of unspecified hypotheses. These
judgments were evaluated by comparing them to a probabilistic model
developed for this purpose.

The task which was modeled was that of generating possible academic
majors for an hypothetical student at the University of Oklahoma. The
hypotheses to be generated were based on the courses the student had taken.
The enrollment records for all students currently enrolled in the
University were used to determine the probabilistic relationships between
majors and courses. A total of 166,858 enrollment records were tabulated to
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obtain the posterior probabilities of variou's majors given selected
courses. These veridical values were compared to subjects' estimates to
address the accuracy of calibration. This task had the necessary
characteristic that the veridical relationshirs between majors and courses
were known, and the task also had the property that most student subjects
inderstood it intuitively. However, it should be noted that many of the
relationships between courses and majors are complicated. Students enroll
in a program of study for many complex reasons, including personal
preference, advice from other students and advisors, and College and
University requirements.

In the first experiment (I), subjects estimated the plausibility of
three specified hypotheses and a diffuse catch-all hypothesis of all other
hypotheses. They also estimated the plausibility of the specified
collection of hypotheses versus the catch-all set. Two major results were
obtained. First, as might be expected from the task analysis, plausibility
estimates were quite variable, and were only weakly related to the
veridical probabilities. Second, the overwhelming majority of these
estimates were excessive in respect to the veridical probabilities. Both
results were quite reliable, and have since been replicated in several
situations (2,7).

It occurrea to us that the explanation for this excessive certainty
might be that the decision maker uust populate the comrlementary set of

. unspecified hypotheses before the specified hypotheses (or sets of
specified hypotheses) can be assessed accurately,. We also had reason to
believe that the retrieval of hypotheses from mewory was inpoverished. If
this were the case, then attempts by the decision maker to populate the
unspecified set of hypotheses would be only partially successful.
Consequently, when plausibility estimates were made, the unspecified set of
hypotheses was incomplete, and hence its plausibility was rnder-estimated.
If the plausibility of the unspecifieu set was under-estimated, then the
plausibility of the specified set was necessarily over-estimated.

The next study (2) was a test of this explanation. There were three
sroups of subjects in this study. One group was essentially a replication
of one of the conditions of the previous study. Subjects estimated the
plausibility of sets of specified hypotheses and the unspecified catch-all
hypotheses much as before. In the other two groups, however, manipulations
were introduced which were designed to increase the availatility of

* hypotheses in the catch-all set. In one condition, subjects were encouraged
to explicitly populate the catch-all set. This manipulation war chosen
because it was believed that askiig the subjects to make a fcrmal search of
memory for hypotheses would increase the number of "unspecified hypotheses"
available in memory. The second manipulation consisted of showing the

* . subjects exemplar hypotheses from an experimenter-ge7,erated catch-all set.
This manipulation should also increase the availability of hypotheses in
the catch-all set.

Both conditions which were designed to increase tle availability of
hypotheses in the catch-all set produced estimates that were less
excessive. Therefore, we concluded that at least part of the excessiveness
in plausibility assessmenc was due to the liraiteO availability of
hypotheses in the catch-all set.

4.9
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Our studies up to this time had used only sets of hypotheses
supplied by the experimenter. le were forced to used experimenter-supplied
sets because of limitations in the software which determined the
probabilistic relationships between courses and majors. We developed an
algorithm which would efficiently process the 166,858 enrollment records
for all courses and all majors. Then we were able to run a new study which
both replicated the previous studies using experimenter-supplied
hypotheses, ano also also allowed us to study plausibility estimates for
subject-generated hypotheses. Therefore, one comparison in this study was
between experimenter-supplied and subject-generated hypotheses.

Previous studies employed a response mode which was a variant of
the odds estimation technique. A direct probability estimation response
mode was compared to the odds response mode. The motivation for this
manipulation was to make sure that the excessiveness in plausibility
estimates was not due to the response mode.

The results replicated our previous research and reinforced our
conclusions. Plausibility estimates were excessive for both experimenter-
supplied and subject-generated hypotheses. We had predicted that this would
be the case because subjects should have difficulty populating the
unspecified set of hypotheses in either condition. Somewhat to our

- surprise, however, subjects who generated their own hypotheses were
significantly more excessive than subjects who worked with experimenter-
supplied hypotheses. One possible explanation for this effect is that
subjects who generated their own hypotheses nearly exhausted their set of

"4 plausible hypotheses in populating the specified set, and consequently did
a poorer job of populating the unspecified set.

In both response mode conditions excessive estimates were found,
although the subjects in the direct probability estimation condition were
somewhat less excessive than subjects in the odds estimation condition.
(This study was not issued as a technical report because it was a follow-up
study for th.e availability study (2), but was included in the journal
version of the availability study.)

There is a robust and important conclusion that can be drawn from
the last three studies. We believe that plausibility estimates of
hypotheses are excessive, and that this behavior can be traced to
deficiencies of the hypothesis retrieval process.

Protocol analysis of hypothesis generatiou.

i'ehle, in a doctoral dissertation (7), took a rather different
approach to the hypothesis generation problem. Using a modification of

% NSimon's protocol analysis. technique, the hypothesis g~neration performance
of expert and non-expert auto mechanics was studied in an automotive
trouble-shooting task. This study used markedly different research
strategies than the other studies in this contract, and it independently

"" confirmed several of the observations that were made using more traditional
techniques.

Subjects in the protocol analysis task were either undergraduates
who professed some knowledge of cars, or expert auto mechanics from the
University motor pool. Subjects were given a written description of a

* J.:, 4.10
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malfunctioning automobile, and were asked to "think out loud" while
generating hypotheses about the cause of the malfunction. Examination of
the protocols revealed evidence for consistency checking. Hypotheses were
generated, and then subsequently ruled out as inconsistent with the data.

In addition to the protocol analysis, both the number of hypotheses
that the subjects generateo were analyzed, and the plausibility estimates
for collection of hypotheses that the subjects generated were analyzed.
Experts and non-experts generated approximately the same number of
hypotheses; the mean number of hypotheses generated per problem was 3.43
and 3.36 for the non-experts and experts, respectively. These means can be
compared to the number of hypotheses that were logically possible for the

. .problems. Information provided by the subjects was used to make this
" estimate in the absence of a completely authoritative source for this

information. The hypothesis set for each subject was pooled with that of
the other subjects by taking the union of all hypothesis sets. Illogical
hypotheses were discarded from this pool (an average of .1 hypotheses per
subject per problem). The number of hypotheses in the pooled set is
actually a lover-bound estimate of the number of logically-possible
hypotheses. The obtained pooled sets contained an average of 17.8
hypotheses per problem. By applying a mathematical model to this
situation, Mehle was able to estimate the the number of hypotheses that
were logically possible was 21.5 hypotheses in the average problem. Thus
the average subject was generating approximately 19% of the logically
possible hypotheses per problem. It was impossible to determine if the
hypotheses generated by the subjects were implausible or plausible, but
subjects' hypothesis sets' certainly lacked the desirable characteristic of
completeness.

The plausibility estimates of the sets of hypotheses generated bythe subjects were also examined. There were no veridical probabilities for
this task, but it was possible to exploit the fact that the sum of the
probabilities of an exhaustive set should be one. The hypothesis generators
in this experiment generated incomplete, impoverished sets of hypotheses.
If all subjects' probability estimates are assumed to be true and if these
estimates are assigned to the hypotheses in the pooled set, then a
probability measure of 5.04 must be assigned to the more complete set ofhypotheses developed by pooling. This measure would have been 1.00 had the
whole group of subjects been veridical estimators. Thus, subjects were
clearly excessive in this task. This result generalizes our earlier

_, conclusions considerably, as it shows similar behavior in a task that was
quite different from the 'majors from classes task."

In summary, the protocol analysis study, even though it used
different measurement techniques, reached much the same conclusions as
other research. The data suggested that subjects were impoverished
hypothesis generators 'who~a plausibility estimates were excessive.

%.
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-Z&FZ 5. ACT AD OUTCOME GEMATION

A model for act and outcome generation.

We developed a tentative model for act and outcome generation during

the course of the project. This model served as an informal guide to some

of our studies on act and outcome generation, and as such it is worth

presenting here.

Assume that the decision maker has engaged in problem analysis and

definition where the present state and the goal state are defined. At this

point the decision maker knows where he or she is (the present state) and

where he or she wants to go (the goal state). The problem may be recognized

as familiar, and a number of possible actions may be readily available in

memory. For example, suppose that your car refuses to start on a cold

winter morning. This situation may bring to mind other similar or nearly

identical problem situations that you have experienced in the past. On
these occasions, calling a cab or trying to start a second car may have

been solutions to the problem. Your ability to generalize from the present
situation to past situations probably is based on a generalization
gradient; that is, the problem situation itself reminds you of other

* '. similar situations. If this is the case, one might expect that the
similarity of the present problem situation to earlier situations stored in
memory will be a major determinant of the probability that these earlier
solutions will be recalled. However, suppose that such a generalization
process fails, and actions suggested by past experience either are not

retrieved from memory, or if retrieved, are found to be infeasible for one
reason or another.

If the actions that readily come to mind are infeasible, or

nonexistent, then a deeper analysis of the problem is required. Actions can
be suggested by an analysis of the problem space, and our model uses
notions of a "means-ends" analysis borrowed from Newell & Simon (1972). The
present state and the goal state differ on one or more dimensions in the
problem space. We assume, following Newell & Simon, that the decision
maker concentrates on those dimensions where the present state and the goal
state are noticeably discrepant. Once these dimensions have been
identified, we assume that the decision maker searches memory for operators
that will reduce the difference between the present state and the goal
state along that dimension. Thus if the present state is your home, and the

goal state is your office, one strategy that you might employ is to

discover operators that might reduce the distance between you and your
goal. Thus, you might imagine taking a bus to within several miles of your
office, and then calling your office and asking a colleague to pick you up

at this intermediate point.

Subgoals can be defined. For example, you might define a subgoal of
starting your car because if you could start the car quickly then you could
get to work on time. Perhaps the engine was flooded by your unsuccessful
attempts to start it, and a short wait would result in successful starting.
If your home is at the top of a big hill and if your car has a manual
transmission, you might contemplate rolling your car down the hill to start

it.

The operators that the act generator uses are based on causal

10.
%a



• -- itowledge (Einnorn i Uogarth. 1981); the act generator Knows that certain
variables cause change in the problena uimensions. For example, the car may

. not start because the battery will not turn the cold engine over fast
enough. Lovever, ;'ollin- a car down a hill will produce enough engine speed
to start it. Thus, the latter type of act generation in our model is based
on first ideutifying problem uimertsions, and then fircitng causal operators

*.. to reduce the difference on that dituension between the present state and
the goal state.

ilotice that tjis example also illustrates the importance of hypothesis
%generation in interpretin6 the car's symptos. The car may not have started

for a number of reasons, such as a low battery, a frozen 0 as line, summer
wei.;ht oil, etc. If the act generator makes an incorrect 6ia6uosis the car
may arrive at the bottom of the hill without starting, Lhus compounaing the
problew. Thus, problem analysis involves hypothesis ger.eration followed by
inferences; it is this higher-oreer structure that is analyzed to find the
proper operators.

lie assume that once an operator is found, the act generator may
L.simulate the effect of takin6 hat action i, imagination, as discussec

extensively in chapter 3.. Tais ";,ik-tnrougn'" process involves the
construction of a scenario where-the act generator imagines performing that
operation, .observ in- its effects, perhaps talin, another action, etc.,
until the oaol is reached. Le assu-ae that durin6 this simulation process
alternative outcomes are generated as tae decision maker comes to places in
the scenario where several outcomes seew plausible. Sowe outcomes are
generated when the act generator reaches a chance tork in the scenario. The
scenario has a number of plausible paths leadinb from the chance fork, and
the act generator can not be sure of iOllOwinb the path leading to the
goal. Sometimes the paths are associlted with alternate states 'f the world

* , that can be identifie6. !,s these alteruative states of the world are
created by the hypothesis 0 eneratioun process, hypotnesis 6enCration is also
involved in outcome generation.

In review, our model proposes two processes for act generation. Some
acts are. 6enerated by searching tmemory for similar instances of the

. problem. If this initial search process is not completely successful, a
deeper analysis of the problem is made in an attempt to find operators that
reduce difierences in dimeusions where the goai state difters most from the
present state. Inference processes are important in choosin6 these
operators. Once .a potential operator is ideaitified, its ef ects are
simulated by creating &L goai-directed scenario. Outcome generation occurs

.* ': when chance forks are discovereQ in the scenario.

Heasuring act and outcome generation performance.

Developing satisfactory ways of measuring act and outcome
generation performance is an extremely cnailenging problem, a problem to
which we devoteu approximately IL mutths or our contract. The uifficulty of

.N. measuring performance is due to three sources. First, it is necessary to
characterize tae structure of decision problem to distiuguish acts that are
are minor variations of other acts frota acts that represent a new and
creative solution to Lme problem. Second, there re, ii theory, an infinite
number of acts that could conceivably be performed in mopt real-world
problems. Third, evena if the first t-,o problems could ue solved, it is
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still highly desirable to characterize the subject's performance in terms
of quality as well as quantity.

Our approach to solving the first two problems involved creating a
hierarchical structure for the decision problem. First, we established
empirically that a seemingly infinite set of actions can be organized into
a hierarchical structure which represents generic solutions to the problem,
major variations of these generic ideas, and minor variations of these
major variations. This structure, which we call a tree, is fini te in size,
although surpris'ngly large, and can be managed. A hierarchical tree
structure is also necessary for distinguishing minor variations of ideas
from major variations. Second, we investigated several ways of creating a
hierarchical tree, including having the experimenter create the tree, as
vell as multidimensional scaling and cluster analysis. Similar structures
resulted using from both techniques.

What is good act generation performance? Criteria for good act

generation should include both completeness and quality. The goal of the
act generation process is to create the complete set of actions that should
be evaluated in the decision process. Uhen a decision maker evaluates
various action alternatives, it is highly desirable that these alternatives

'include the highest utility actions possible. Obviously, a good act
generator should not be expected to generate all possible actions that
might solve the problem, these are virtually infinite. Instead, it seems

".-" more reasonable to define good performance as the generation of instances
of most or all of the high-utility generic solutions to the problem. Thus
completeness is defined in terms of capturing the high utility portion of
the structure of a decision problem. not in terms of generating all
conceivable solutions to the problem.

Developing a performance score for act generation. The hierarchical
tree described above provides the structure that forms the basis for
evaluating the quality of act generation performance. It is formed by
pooling the responses of a large number of subjects and then using informal
or formal techniques (to be described later) to recover the structure of
decision problem. This structure is a lower-bound estimate, because if the
ideas of other subjects were added to the structure it would expand
somewhat. Once a satisfactory structure is cr.eated, the next step is to

..'--'evaluate it using a utility estimation technique. Once these utility
estimates are associated with the structure, high-quality ideas that are
distinct from other ideas and minor variations of ideas can be identified.

The performance score itself is calculated from the utilities
associated with the hierarchical tree. There are several scores which give
complimentary information. If one is interested in the breadth or
completeness of act generation performance, the analysis is confined to the
generic ideas, or "limbs" of the tree. If one is more interested in the
extent to which the act generator can create good actions, irrespective of
whether they are related or unrelated to other actions, a "depth" score can
be computed that includes variations of generic ideas, the branches of the
tree. In both cases the performance score is computed in a similar manner.
The actions of the decision maker are ordered in decreasing utility, and a
cumulative function is calculated by taking the utility of the best action
generated, adding it to the utility of the second best action, etc. This
cumulative performance function obtained from a act generator is compared
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with the equivalent function calculated from the hierarchical tree.
Suppose, for example, that one wished to evaluate the act generatiot,
performance of a subject for the lirbs of the tree. A performance score for
the -eneric ideas .euerated by this subject would be calculated based on
the actions this iiaividual generated, usinLb the limb structure provided by
the hierarchicia tree as a uasis for classification. Then a similar
function would be calculated baseQ on all limbs of the tree, including
those limbs 6eiierated by the subject, and those not generated. A comparison
of these two functions would yield the desired weasure of performance. If
the two functions are identical, then the subject generated all the generic
ideas in the tree, and performed optimally. Performance is suboptimal to
the extent that the subject's function is lover than the function
calculated on the entire structure. The depth score is calculated by by a
nearly identical technique; the anaiysis is perforr-ed using branches as the
basis for the calculations, rather than the limbs.

It is important to understand uhat these pexiormance scores mean and
what they Cio not mean. Both scores have the property that they measure the
extent to which the acc generator created the complete set of high utility
actions. Tiie "li bs" score reflects the breadth of performance and the
"limbs anu branches" score reflects the depth of performance. Both scores
capture performance in decision-relevant terms; they are a quantitative
measure of the "goodness" of the act generation process as seen by the
decision maker who will evaluate and choose among these actions. Nowever,
these cumulative utility iunctions, because of our utility measurement
techniques, are not an "extensive measurement" (cf. Roberts, 1979). This
technical property reans that the cumulative utility functions do not

-. necessarily capture tiae utilities of the collection of actions, although
they probably approximate the utility of the collection quite well. However
as performance scores they La.ve a the desired properties, with a minimum
value of zero and maximum vclue dictated by the structure of the
hierarchical tree.

The first act generation project. Our first study (10), for which we
developed the performance score described above, used two ill-defined
problems. The first problem involved generating actions directed at solving
the difficult parking problem at the University of Oklahoma. Students
played the role of student representatives to the parking committee, and
were asked to record any action that came to mind. Students were encouraged
to record any idea, good or bad, because we did not want to censor their
ineas ano-they had an uniimiteu time to work on the problem. The second
problem involved finding living arrangements for an impecunious Canadian
friend who was broke, had exhausted his credit, his relative's ability to
lend mouey, and was prevented by the U.S. Emigration service from working.

Followin6 the initial study, two additional studies were performed to
get utiltty estimates for the hierarchical tree constructed by the
experimenters. Snc,wn in figures 5.1 and 5.2 are the performance scores for
both the "limbs" and "limbs and branches" analyses, which reflect the
breadth and depth of subjects performance on the Parking problem. The
results of the Living problem were very similar, and for that reason are

"*' not presented here. The function labeled "total" is the function based on
.- tue tne limbs or branches of the hierarchical tree. The performance of the

average subject is the function labeled "wean". As can be seen from these
S. figures, the typical subject did not generate an adequate act set. However,
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the best subject in the group did a credible job (the function marked
"best"). The closeness of the "best" subject function to the lower-bound
estimate of optimal performance (the "total" function) is important because
it indicates that the optimal measure of performance is reasonable, and
reflects the average subject's failings accurately.

A more detailed look at the subject's performance can be obtained by
examining the best 10 branches from the hierarchical structure. Shown in
table 5.1 are the actions corresponding to these branches, and the
probability of generating these branches. Two out three subjects generated
the action "build a high-rise parking structure", an idea that was getting
considerable publicity in the student newspaper at that time. However, the
remaining high-utility actions are rarely generated. The typical subject
generated 11.2 actions. Of these actions, 4.4 actions were of positive
utility, and of these remaining actions about 2.5 haa utility values higher
than 45 points. (le chose 45 points as being near the middle of the range
of utility scores, but similar conclusions would be reached with other
arbitrarily chosen points.) Thus, the typical subject has between two and
three ideas which are good enough to be serious candidates for

*implementation. However, there are 25 actions that had utilities greater
than 45 points in the hierarchical structure. This demonstrates that the
structure produced by the typical act generator is impoverished in this
problem.

Table 5.1

The probability of generating the best 10 limbs and branches in the
Parking problem tree

Probability
of

Utility generating Actions
act

----- ---- - --------- ----------

100 .07 Improve the trolley and CART systems.
77.5 .63 Build a high-rise parking lot.
60 .07 Put more small car parking spaces in student lots.
60 .03 Have employees park at Lloyd ioble, use trolley.
57.5 .03 Build lots around lorman, shuttle in students.
55 .10 Reduce the price of parking stickers for carpools.
55 .07 Advertise advantages of riding bike, motorcycle.
51 .10 Have more selection of afternoon, evening courses,
50 .03 Use some OU service vehicle parking for students.
50 .10 Use extra areas around fraternities for overflow.

616
sum of
utiles

We believe that this result is quite important as it is the first
attempt to measure the impact of act generation performance on decision
making, and the results suggest that act generation performance will have a
big impact on the quality of decision making. Consider the quality of
decision making with a problem structure of two or three good actions
generated by the typical subject as compared with the more complete
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hierarchical tree structure consisting of 25 good actions. Tne oecision
maker's menu of actions, if responses from a typical subject were to be
used as the source of this ,wenu, would be impoverished. Although a decision
analysis o.i this itapoverished set of actions probably would result in the
implementation of one or more actions that would improve the situation
somewhat, consider how uvch better off the decision maker would be if the

.*.-( menu had 25 actions fro which to choose. For this reason, these results
suggest that the quality of act generation vill have a profound impact on
the quality oi decision maaking in ill-defined pro lems.

Follow-up studies on act generation. Because of the potential
importance of our first studies, we did a second series of studies (12)
using the parkin- probieu which replicated and extended the results of the
first studies. The second series of studies also addressing possible
criticisms with improved methodology. In our first study we asked subjects
to respond with everything that came to mind, and about 20% of the action
generated were impractical or fanciful. Perhaps subjects woula do better if
they were attetapting to -euerate quality actions, or perhaps they simply
were not sufficiently motivated to do well. In these follow-up studies, we
employe; substantial monetary incentives. One group was given "quality"
instructions, where they could earn up to $1.00 for each action they

-. generated. A second group was given "quantity" instructions with a $.50
incentive for each action generated. This incentive was adjusted to be
about equal to that of the "quality" group. A third control group was not
given a incentive, but were just instructed to avoid minor variations of
the same action, or frivolous actions.

Other methodological improvewents includea using a hierarchical
structure based on multidimensional scaling, and cluster analysis (12, to be
described below), and improved utility measurement procedures which
captured the utilities of both students and subject-matter experts.

The results of this second series of studies essentially replicated
the findings of the first series. Shown in figure 5.3 are the performance
scores for the three groups as compared to the lower-bound estimate of
optimal performance using the utility values obtained from experts (the
functions based on student utility values were virtually identical, and so
are not shown). lotice that the subjects who were given substantial
incentives for quality actions scored about the same as the control
subjects. The group ttiat was paid for quantity did somewhat better, but all
three groups performed at about the same level as subjects in the previous
series of experiments, replicatinb our previous results. Subjects in the
new series generated about two to three good actions, out of at least 25
-ood actions.

Another result from this series of studies of great interest and
importance is the estimates of the numbers of "ungenerated" actions at the
end of their sessions. Ie asked subjects to estimate the number of
remaining actions yet to be generated and the number of "good" solutions
yet to be generated. A few subjects realized that the possibilities are
almost infinite, but most subjects readily supplied a numerical estimate.
The median estimates of the three groups were in the neighborhood of 4.5 to
6.0 for the first question, and 2.5 to 3.0 for the second question. Similar
estimates were obtained in another study (17), were subjects estimated that
there were between 4 and 5 "reasonable" actions that were yet ungenerated.
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Thus, the typical subject generates two to three good ideas, and
thinks that about three to five other good ideas exist that they couldn't
generate in the Parking problem, when in fact there are more than 25 good
actions that could be suggested. This result is similar to that obtained in
our hypothesis generation research, subjects apparently do not realize that
their performance is impoverished, apparently because the same memory

A'. process that fail in the generation of actions are also involved in the
estimation of the number of "ungenerated" actions. These results obviously
are important. They suggest that impoverished act generation is a "silent"
disease, similar to high blood pressure, of which the patient is not aware.
This topic is discussed at greater length in chapter 8, where its
implications are explored in more detail.

Describing the subjective representation of the decision space. To aid
our studies of act generation performance, we also studied the subject's
representation of the problen, space using multidimensional scaling and
cluster analysis. This research (12) was used both as a means of deriving a
more objective hierarchical tree structure for use in our performance
measures, and as a technique for better understanding typical subject's
perception of the Parking problem. Do subjects see the Parking problem as a
member of the general class of shortage problems, or as a unique problem
with few relationships to other problems? If the Parking problem is seen as
an instance of a more general shortage problem, then subjects should
structure its space around generic strategies such as "increase the
supply", "reduce the demand", or "use available resources more
effect ive ly".

Subjects made similarity judgments on 43 actions taken from the
parking problem and these judgments were analyzed using nonmetric multi-
dimensional scaling using the ALSCAL program (Shepard, 1974). Three factors
were extracted. A second experiment was conducted to interpret these
dimensions using multiple correlation techniques. Subjects rated each of
the 43 actions in terms of the extent to which they represented generic
strategies, specific strategies, personal goals (ie. being able to find a
parking spot), and evaluative dimensions (ie. feasibility, cost, and
political dimensions). It was found that the first dimension was best
described as "involving alternative forms of transportation", the second
apparently was best described as "change the current parking priorities",
and the third dimension appeared to be related to "building new
facilities".

Apparently the subjects did not structure the Parking problem as a
generic shortage problem, as they were not inclined to describe the acts in
these terms. Instead, they seemed to organize their thinking around
specific strategies for solving the problem such as those listed in the
preceding paragraph. These are concrete examples of the more general
generic strategies. For example, "building new facilities" is a specific
instance of the generic strategy "increase supply". Apparently the subjects
prefer to think of the problem in concrete terms. A representation of the
subject's space in these more concrete terms is shown in figure 5.4. Shown
is a representation of the 43 acts arranged in the three-dimensional space

described by these three dimensions.
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Several types of hierarchical cluster analysis were performed on the
" - 43 acts using the TAXON procedure in the NT-SYS statistical package (Rohf,

Kishpaugh & Kirk, 1979). The Average and Complete Linkage methods gave
similar results, and the Average method was chosen as the best structure
because its clusters made more sense in several instances. A modifiedI version of this cluster analysis was created for use in subsequent studies
because it was necessary to incorporate additional acts that were generated
after the cluster analysis was performed. This modified structure is shown
in f igure 5.5.

This structure was was used in the incentive study (12) and all
subsequent studies using the Parking problem. Its major advantage is that
it is empirically defined from the subject's responses, rather than being

* *. ~ based on the idiosyncratic analysis of an experimenter. However, the
results obtained do not appear to be influenced much by the technique used
to define the structure, as will be discussed below.

Factors that might affect the generality of the act generation
studies. The results of our act generation studies seemed to be so
important that we performed a number of analyses to check the generality of
these results. First, as mentioned above and reported in 10, we calculated
the performance scores using both the tree structure created by cluster
analysis ano a tree structure created by one of the experimenters. Very
similar results were found, suggesting that the result of impoverished act
&eneration was not due to the particular structure used in the analysis.

Second, very simiilar results were found when subjects were given
,S. payoffs for quality of actions, quantity of actions (12), or simply told to

respond with anything that came to mind (10). Thus the impoverished
performance does not appear to be due to a lack of motivation, or nuances
in the wording of the instructions.

Third, calculating the performance scores with utilities supplied by
the type of subjects who were used as act generators or subject-matter
experts had only a small effect on the performance scores, but the
impression ot impoverished performance remained using either source of
utilities.

Fourth, in calculations done for the publication version of 10, we
calculated the performance score measures repeatedly using the utilities

"' supplied by each of the individual utility estimation subjects rather than
using a median utility measure calculated for the group of utility
estimators. While there was considerable variability produced by this
manipulation, the same general conclusions of impoverished performance
emerged.

Fifth, we obtained approximately the same effects in both the Parking
and the living problems. Pitz, Sachs, & Heerboth (1980) report similar
results in their study comparing various elicitation techniques.

WJhy is it that none of these manipulations cause a big enough change
," to substantially alter the conclusions? te suspect that when you start with

performance such as that shown in table 5.1, where subjects were so
unlikely to generate the best ideas, nuances such as instructions, the

V structure, and utilities used have little effect on the overall conclusion,
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Figure 5.5. The decision tree used to classify acts developed from
cluster analysis.

1-0 Create more parking spaces by building new facilities.
1. ISuild a highrise parking structure.
1.2 Build underground parking.
1.3 Build new parking lots on university land.
1.4 Expand existing surface lots.
1.5 Teat down old buildings to create space to build parking spaces.
1.6 Buy land to build additional parking lots.
1.7 Take the parking problem into account in future planning of

expansion of the university.
1.8 build additional remote lots and run buses to campus.

2.0 Obtain more parking spaces without actually building new facilities.
) 2.1 Use space more effectively (e.g., decrease the width of spaces).

2.2 Request the use of areas around campus (e.g., church lots) for
additional parking.

2.3 Use city streets near campus for university parking.
3.0 Alternative forms of transportation-Group.

3.1 Encourage people to carpool.
3.2 Force certain people (e.g., cOuters, faculty) to carpool.
3.3 Encourage people to use the C.A.R.T. system on campus.
3.4 Improve the C.A.R.T. system on campus.
3.5 Expand the C.A.R.T. system to include other areas of Norman.
3.6 Work with the near-by communities to form a mass transit system.

4.0 Alternative forms of transportation-Individual.
.. 4.1 Encourage use of bicycles and/or motorcycles.

4.2 Hake individual transportation safer.
4.3 Encourage other forms of individual transportation (t.g.,walking).

5.0 Change current university policies regarding parking.
5.1 Eliminate parking priorities.
5.2 Allow students to park in restricted areas (e.g., faculty/staff

lots. during certain hours (e.g., after 6:00 p.m.).
5.3 Bet time restrictions (e.g., 2 hour parking) on more lots.
5.4 Enforce existing parking regulations more strictly.
5.5 ake certain people (e.g., commuters) park in certain places.
5.6 Limit the number of cars on campus by not letting certain people

(e.g., freshmen) have cars on campus.
5.7 Distribute a limited number of parking stickers.
5.8 Assign a specific space for each driver.
5.9 Outlaw cars on campus for everyone.
5.10 Allow certain people (e.g., those who have even number license

plates) to only park on certain days of the week.
5.11 Increase the price of parking stickers.

6.0 Reduce the number of people who need to park.
6.1 Offer more correspondence courses,
6.2 Establish branch campuses of the university.
6.3 Reschedule activities and/or classes to change demand.
6.4 Provide housing or improve existing housing so people can walk.
6.5 Reduce the student population. For example, limit enrollment.
6.6 Have someone drop students & faculty/staff off and pick them up.

7.0 Indirect strategies for solving the problem.
7.1 Appeals to good judgment.
7.2 Ways to sake money to solve the problem.
7.3 Suggestions for ways to come up with solutions.

$.0 "Flaky" acts (e.g., issue everyone a set of wings).
4 °e



that performance is impoverished. Similar performance has been observed in
two other studies yet to be described.

In all our research, we have found only one exception to this general
conclusion. This exception is in one sense the exception that proves the
rule. As will be discussed extensively in chapter 6, subjects who score
exceptionally high in measures of divergent thinking do not show
impoverished performance. Instead, they show exceptionally good
performance, with the best of these subjects performing slightly below the
lower-bound estimate of optimal performance. We believe the discovery of
the importance of divergent thinking, and the fact that a few of these
subjects approximate our estimate of lower-bound optimal performance, lends
support to our characterization of unselected subjects as impoverished. If
no subjects approached our estimate of optimal performance, it could be
said that this estimate is too high.
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C14MZ 6. RECURN TOPICS IN RYThMESIS, ACT* AND OUTCOME GENUEkTION

Perfornance in small groups.

Group hypothesis generation. One strategy that has frequently been used to
improve problem solving performance is to work in small groups rather than
as individuals. The mounting evidence that individual hypothesis generators
produced impoverished hypothesis sets suggested that it might be profitable
to investigate group hypothesis generation to determine the improvement
that working in a group affords.

In a study using the "majors from Classes" task (8), subjects either
generated majors from classes as individuals, or as a member of an
interacting group of four subjects. The pooling technique was used again,
but in this case the veridical posteripr probabilities of majors given
classes were available, and were used rather than a count of logically-
possible hypotheses. Thus the posterior probability of hypothesis sets
generated by either individuals or small groups could be calculated.

The mean probability of the' hypothesis set for individuals was .335
while interacting groups of. four had a mean probability of .427. The means
reported are the probabili'ies t at the hypthesis sets contained the
"true" hypothesi. - Thus, as one might expect, group performance is
superior to individual performance. However,. both individuals and small
groups were impoverished hypothesis generators. Although subjects in this
task were told to neglect very unlikely (p<.O02) hypotheses, and so could
not be expected to have hypothesis sets wito a pr9bability of 1.00, the
probability of the hypothesis set of an optimal subject would have been
0.906. There is ground for much improvement in t.bese performances.

These results suggested a general way.of examining at least two
factors which affect group performance. One factor is the potential
increase in information that the group provides. The adage, "rwo heads are

" better than one," has validity in this sense. As group size increases, the
amount of new information added by each new member should become less, but
the total information possessed by the group should increase. The pooling
process described earlier is one way to measure the information possessed
by the group, and it provides a natural metric for expressing how the
amount of task-relevant information increases as group-size increases.

The second major factor in interacting groups is the social
interaction which occurs. Under certain conditions, social interaction may
be facilitive, but it is usually found to inhibit group performance (8).
When the performance of individuals, synthetic groups, and interacting
groups are compared, it is possible to partition performance into an
informational component and a social component. In the present experiment,
the information that could be gained from pooling the information of four
individuals is estimated to be a .205 increment in hypothesis set
plausibility (.540-.335 -.205). Social interaction, however, caused a
decrement in performance of .113, as calculated from differences in
performance of the interacting and synthetic groups (.427-.540= -. 113). The
actual gain in performance of an interacting group over an individual is
0.092, and this difference results from the additive combination of
informational and social factors.
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Group act generation. The results of our study on group hypothesis

generation left one interesting question unanswered. Why do people work

together in groups when synthetic groups are far more efficient? One

obvious answer is that interacting groups may fulfill other important
motivational, social, or coordinating functions. However, there also may be

an informational effect that makes it profitable to work together in

groups. This effect, which we formally call the information exchange
component, but informally call the "ping-pong" effect, occurs when the
ideas of another person, when combined with your own, produce a synergistic
product that is greater than the sum of its parts. This effect has also
been called "piggybacking" (Day, 1980) and "hitch-hiking" (Stein, 1975),
but its existence had not been empirically demonstrated.

However, it is also possible that group interaction has a negative net
effect. This might occur if an individual spent time elaborating the ideas
of others rather than thinking independently about the problem. Thus, two
individual, working interactively, might chase each other's ideas,
proposing minor elaborations, and achieve less to show for their time than
if they had been working independently.

The problem in studying the "ping-pong" effect is the same as in the
previous study; it is very difficult to disentangle social factors from
informational factors. We used the same approach of devising experimental
manipulations in our study on this topic (12). In addition to using

interacting groups and individuals, we introduced a third information
* exchange (IE) condition which simulated the face-to-face interchange of

*.ideas in an interacting group without allowing social interaction. In the
third condition, the ideas generated by each subject were transmitted
immediately via a computer to the other subject in a different room. Both
subjects thought that the ideas received from the other subject were
generated by the computer which they believed was running an experimental
AI-based program. They were told the program was attempting to generate
ideas related to theirs in an effort to help them. Subjects therefore
believed that they were interacting only with a computer, when in fact,
they were seeing the ideas of the other subject as they were generated.

We employed the Parking problem, and computed the performance score
for individuals, interacting groups of size two, synthetic groups of size
two, and IE groups of size two. Both the IE and the synthetic groups were
found to be superior to the interacting group. However, there was no

* - significant difference between the IE and the synthetic group on this

summary measure of performance. The interacting group was not found to be
significantly better than a single person working alone.

- Using a simple additive model to partition performance, we estimated
that the IE group showed a 6.9% improvement over a synthetic group of the
same size. However, the IE group generated 41% more actions that the
synthetic group, but only 15% of this 41% gain were unique actions. Thus
about two thirds of the gain in the number of acts generated represented
minor elaborations of the ideas of the other member of the IE group, and
these elaborations did not yield higher utility actions.

In summary, the information exchange that interacting groups can
exploit does seem to have a small positive effect. This gain, however, is
swamped by other negative social effects that occur in a interacting group.
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Furthermore, the actions that are generated by information exchange tend to
be minor elaborations of the actions that have already been generated. It
appears that the the suggestion of Osborn (1957) that "the average person
can think up twice as many ideas when working with a group than vhen
working alone" (pp. 228-229) is wildly optimisti,. In fact, our interacting
groups performed 41% less effectively than IE groups of the same size and
no better than individuals working alone. Our research shows that one
popular justification for working in interacting groups, that of
information exchange, does not result in sufficiently large differences to
justify working in interacting groups with the types of problems we
studied. However, we found that the use of synthetic groups is very
effective in improving act generation performance. The "Delphi technique"
(Lindstone & Turoff, 1975) is one such method of exploiting the gains in
information in a group, while reducing negative social factors.

Schemata, frames, and inferences in hypothesis, act and outcome generation.

Schemata in hypothesis generation. One informal observation that we
made in several hypothesis generation studies was that our subjects
appeared to be blind to certain classes of hypotheses. Uhen asked to
generate hypotheses, subjects sometimes generated hypotheses that seemed to
be based on an implicit interpretation of the data. Other subjects seemed
to adopt different interpretations of the data, and to generate a
correspondingly different set of hypotheses. This observation suggests that
sometimes interpretations of the data influence the memory retrieval
process, thus biasing the subjects toward one type of hypothesis and
against another type. This general phenomenon has received some attention
in cognitive psychology. The organization of data into a meaningful pattern
by making inferences about their meaning is termed a schema in cognitive
literature.

When the hypothesis generator is attempting to add hypotheses to a
set of hypotheses that have already been suggested, schemata might be
expected to play an important role. This situation may occur when the
hypothesis generator "inherits" a decision problem. As scientists we are
constantly faced with inherited hypotheses which may bias our
interpretation of the data and our generation of new hypotheses. Often

-- "inherited" hypotheses suggest particular interpretations of the data which
might seem forced in the absence of these hypotheses. In our natural desire
to obtain closure, we may accept certain interpretations which relate data
to hypotheses. These interpretations may come to represent the data and may
even be encoded in memory in lieu of the data. When we attempt to generate
new hypotheses, the schema that organized the data may be used instead of
the data in searchihg memory. To the extent that this happens, the
hypothesis generation process may be biased.

A study (6) wag performed to investigate these ideas and to propose
a partial cure fc- any such tendencies on the part of the hypothesis
.generator. In this study subjects were given several ambiguous data which
could be interpreted by using several schemata. All subjects were
encouraged to generate as many hypotheses consistent with the data as
possible. The existence of an "inherited" hypothesis was simulated in some
conditions by giving the subject one of several hypotheses to evaluate.
These hypotheses were good exemplars of several different schemata that
could be used to explain the data. The problems involved generating
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possible hypotheses about an unknown geographical area known as "X'. For
example, subjects in one problem were told that one hypothesis that was
consistent with area "X" was a bakery. Available data were that 1) Most
people spend only a short time in area X, 2) Area X contains unusual
smells, and 3) Area X is only open during bt4siness hours. Subjects who
"inherited" the "bakery" hypothesis were more likely to generate hypotheses
such as "restaurant," "fruit stand,!" or "flower shop." Other subjects were
given this same problem but "inherited" the hypothesis "dump" rather than
"bakery". These subjects were more likely to generate different hypotheses
such as "chemical plant," "sewer treatment plant," or "public restroom."
The two schemata that these two hypotheses suggest. are "pleasant" and
S"unpleasant" areas, respectively.

As might be expected, subjects used some schema more often than
others. Subjects in the "no hypothesis" condition were more than twice as
likely to generate hypothesesbnsiatent with the popular schema than the
rare schema. If the hypothesis provided to the subjects suggested a schema
that was popular, then there was relatively little change in hypothesis
generation performance as compared to the "no hypothesis" subjects. If,
however, the schema suggested by the hypothesis was rare, and hence less
likely to occur to the subjetts spontaneously, then there was a dramatic
increase in the number of hypotheses generated that: were consistent with
that schema. There was also a corresponding decreas. in hypotheses
generated that were consistent with the popular schema. These results are
evidence for the biasing effects-of schemata.

le also explored a simple technique forXeducing this bias. A
second study was run using much the same procedure as the firstf except
that the subjects who "inherited" hypotheses were!asked to generate a
hypothesis which was consistent with the data "for another reason." For the
subjects who successfully generated such a hypothesis, the bias was
practically eliminated.

Frames or perspectives in act generation. Historians delight in
explaining how battles are lost because the commander on the-loosing side
had a limited perspective of the situation. Recently- President Galtieri of
Argentina invaded the Faulkland Islands, and received a homiliating rebuff
from the British. Galtieri, the historians claim,. did. not -properly
anticipate the British reaction to an invasion ofitheir-territory. It is
easy to make these analyses in hindsight (Fischhoff,,1975), but harder to
show these effects under controlled laboratory condItions.

One project (14) was explititly concerned with theeffect of the
decision makers frame (Tversky & Kahneman, t980) or perspective on act
generation. In this series of two experiments, subjects were asked to play
the role of either the French government, guerrillas who had invaded the
French Embassy in a hypothetical: Sotth American country and captured French
hostages, or che French hostages themselves. All subjects attempted to
generate the actions that the French governmeat vouldtake to gain the
hostages release, estimated the likelihood of -the various French actions,
and the F,.ench 6overnment's preference for the various actions.

Ovr predominant impression was that there was little or no effect
attributable to the decision maker's perspective. There are two alternative
explanations for the lack of a perspective effect. One, of course, has to

'0
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do with the inadequacies of a laboratory simulation to fully capture the
nuances of a real situation. It is entirely possible that perspective
effects might be observed in a real-world setting, or with a different
problem. Alternatively, it may be that perspective only has an effect in

*hindsight in explanations of historians (Fischhoff, 1975).

Causal explanation in outcome generation. Our final project in this
general area was an examination of the role of casual explanation in
outcome generation (15). Consider the decision maker who is attempting to

. generate actions to reach some goal outcome. As was discussed previously in
Chapters 3 & 5, we assume that the decision maker constructs a scenario
leading to the goal. In this series of studies, we examined the effect that
the construction of this goal-directed scenario has on the generation of
other outcomes that do not lead to the goal. This topic is of considerable
interest because act generation is a goal-directed activity. When a
decision maker constructs a scenario leading to the goal, attention is

. initially focused on the chain of plausible actions and outcomes that lead
to the goal. The construction of the scenario requires that certain
differences in a causal field (Einhorn & Hogarth, 1982) be created.
Therefore, it is possible that the creation of this initial goal-directed
scenario makes it more difficult to construct alternate scenarios leading
to other outcomes involving other causal factors.

For example, consider the entrepreneur who has invented a new "widget"
in hopes of becoming wealthy. This individual may construct a scenario that
involves forming a company to manufacture and market widgets. Widgets catch
on, and soon every household has one, and the inventor retires to a life of
wealth and leisure. As a matter of fact, most such ventures fail, usually
because the entrepreneur fails to anticipate all the alternate outcomes,
which represent the pitfalls in the plan. Often, the inventor is the only
person who really needed a widget, or a competitor with more capital steals
the essence of the idea, or the new firm is so undercaptialized that it
fails before a market for widgets can be created. Therefore, the question
of interest is whether the creation of an initial scenario makes it more
difficult to create other alternate scenarios leading to other outcomes.

Our approach to studying this problem involved having subjects
construct an initial scenario leading to one of several specified outcomes.
Subjects were provided with a case history involving a young man who
assumes a small-town Ford dealership upon the death of his father. Subjects
were asked to write a plausible and convincing scenario leading to one of
four outcomes which we provided. These outcomes involved either the success
or failure of the dealership due to either the personality of the young
man, or the economy. After the subjects had created the designated
scenario, they engaged in a variety of activities that we hoped would
capture any changes that creatin, the initial scenario might produce.
Specifically, they were asked 1) to make their own judgment as to the
probable outcome for the business, 2) to identify factors that would be
important to its success or failure, 3) to generate at least five alternate
scenarios about the business, 4) to rate these scenarios in terms of
likelihood, 5) rate the importance of experimenter-supplied factors that
might influence success or failure, and finally 6) to make predictions as
to how these factors would turn out in the future.

The results suggested that after subjects have created a scenario

.6.

.'. 6.5

*. . . . . . . . C

. . . . . . ..
,. 

- .



leading to a specified outcome, the factors that they use as causal factors
in subsequent scenarios are biased in that they tend to focus on the same

factors that were used in the original explanation. The important causal

factors tend to remain the salient explanations in subsequent scenarios.
For example, if their initial scenario was created to explain why the young

man's personality lead to success of the car dealership, subsequent

scenarios tended to focus on his personality traits, and tended to ignore
economic factors.

Even though the content of subsequent scenarios was biased by the
initial scenario, the number of 'success and failure scenarios and the
likelihood estimates for the scenarios remained approximately equal in the
various groups. This result is similar to that obtained by Pennington

(1981) in hindsight and foresight judgments.

However, even after being forced to generate a number of alternate
scenarios, a debiasing technique used successfully by Slovic and Fischhoff

(1977), our subjects showed differences in their importance weightings of
various causal factors, and in their predictions as to how these factors
would turn out in the future. These results are quite interesting because
they demonstrate how a single causal explanation can actually change what
causative factors the subject believes are important, and their predictions
about the future.

These results are also important because they demonstrate that the
very act of creating a scenario causes the outcome generator to organize

the world in a certain way, and this organization persists in the creation
of other scenarios that might spring from that act.

The second study in this project examined two possible cognitive
mechanisms that might account for the results of the first study. One such
mechanism is selective encoding of information. Possibly subjects who were
asked to explain why economic factors would lead to the failure of the
dealership only recalled the information consistent with an explanation
involving an economic failure.

Alternately, it may be that the initial inferences that the subjects
- make from the case history to stipport the first scenario are remembered and

the subject does not explore other, alternate inferences that could be
made. For example if they interpret the young man's poor academic
performance and frequent changes in major as evidence that he is a "goof-
off" to support a scenario of personal failure', other alternate inferences
that could be made from the same data may be neglected in the generation of

scenarios.

Our technique for distinguishing between these two alternate
explanations involved using a recall test to determine the extent of
selective encoding, and an inference procedure to determine if the groups
were making different inferences from the case history. Subjects
constructed an initial scenario as in the previous experiment, then they
took the recall test and made inferences.

The data from the recall test showed that the subjects had a good
recollection of the case history, but there was little evidence in favor of

- the selective encoding explanation. However, once the information in the
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case history is used to make inferences supporting the initial scenario,
these inferences persist, and the subjects have difficulty reinterpreting
the information in an unbiased manner.

The results from this project have important implications for decision
analysis. In decision analysis, the client is asked to identify the

possible outcomes that might result from an action. This process is by

necessity a serial process. Our results suggest that the process of

creating the initial outcome for such an analysis may cause certain

inferences to be made and causes certain causal factors to be seen as

relevant. Subsequent outcomes tend to be generated using these inferences

and these causal factors, even though the decision maker would be better
..- off to explore other possible inferences that could be made in the decision

situation.
':..

Individual differences in predecision processes.

Individual differences in hypothesis generation. ie noticed pronounced

individual differences in hypothesis-generation ability among cur subjects.

Some subjects generated more than twice as many hypotheses as a typical
subject, and although the typical subject generated impoverished hypothesis
sets, there was an occasional exception to this rule. For practical reasons

it might be useful to have a simple means of estimating the hypothesis

generation ability of an individual, and the cognitive differences between

good and poor hypothesis generators might be enlightening.

Our first study on this topic (5) was fairly traditional. First, we
developed criterion measures'of hypothesis generation performance. One
criterion task was an abstract photo-reconnaissance task whe-e the decision

maker was given a simplified copy of a map from the U. S. Census tract. An
unknown area was marked on the map, and the subjects' task was to generate
as many hypotheses as possible about the identity of this unknown area

using the map and several additional items of information. The criterion

.hypothesis generation score which was finally developed derended on both

the quantity and quality of the hypotheses that the subject generated. Our

choice of predictor variables was guided by several considerations. First,

the divergent thinking involved in hypothesis generatior seemed to be

similar to the divergent thinking used in some creative activities. We

surveyed this literature and identified several tests that were designed to

-measure divergent thinking and creativity. These tests were the Alternate

Uses test, the Remote Associations test, and a subtest of the AC test of

Creative Ability which we called "Possible Reasons". second, other tests
were included to measure such factors as inductive reasoning, and the

ability to use the information provided by the tasks.

Alternate Uses was found to be by far the best predictor of

hypothesis generation performance (r-.27), but none of the predictors
accounted for much of the variance in this ability.

In the second study of this series (5), we took steps to increase

the reliability of the criterion ,easure of hypothesis generation. The

Alternate Uses test was retained, and the other tests of creative problem

- . solving were dropped. Tests of general academic achievement (the ACT), and

intellectual ability (the Information scale of the WAIS) were added to the

battery of predictors. Several different versions of Alternate Uses were
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also developed to measure possible cognitive skills that might be involved
in hypothesis Seneration.

Our modifications of the Alternate Uses test were based on the
following argument. The Alternate Uses test involves generating alternate
uses for common household items, such as a coat hanger. Subjects are
instructed to generate as many possible uses for a coat hanger as possible.
Hany of the possible uses for a coat hanger involve using a different
schema than "a device for storing clothing in a closet". A coat hanger has
many attributes which can be exploited in various ways. It is metal, it
conducts electricity, it is ductile, it is long and thin, it is fairly
rigid, it doesn't burn at household temperatures, etc. The implicit
properties of this object could be used as retrieval cues to search memory.
Various combinations of these attributes suggest different schemata such as
l"a device to open a car door" (long, thin, rigid, and ductile), or
Imarshmallow roaster" (long, thin, rigid and fire resistant). Therefore, a
subject who performs well at this task might first analyze an object to
determine implicit dimensions or attributes and then use various
combinations of these dimensions as retrieval cues for alternate uses.
Performance in the Alternate Uses task and in hypothesis generation might
have two components, the retrieval of the implicit dimensions and the use
of this implicit information to retrieve uses or hypotheses, depending on
the task.

We modified the Alternative Uses test to create two new versions of
the test to use in addition to the original version. One of the new
versions measured the subjectsr ability to retrieve the attributes of the
household objects that might be useful retrieval cues, and a second version
measured the subjects' ability to generate uses when these attributes or
dimensions were explicitly provided by the experimenter.

There were several interesting results from this experiment. First,
as has been found in every study dealing with this topic, hypothesis
generation of the average subject was impoverished. The mean hypothesis
generation score for subjects was about 3 "good" hypotheses per problem,
while the lower-bound estimate of the maximum number of logically possible
hypotheses was approximately 26 "good" hypotheses and 43 "fair" hypotheses
per problem. Second, the correlation between the Alternate Uses test and
the criterion measure of hypothesis generation was .51, a considerable gain
in predictive power over the previous experiment. This correlation could
undoubtedly be increased by item-selection and other methods of test
refinement. Such further development could perhaps convert the alternate
uses test from a research tool to a useful predictor of hypothesis
generation performance. Third, achievement and general intelligence were
shown to be only weakly related to hypothesis generation performance.

Both of the proposed components of hypothesis generation
performance were shown to be important. The "retrieval of implicit
attributes" component and the "retrieval of hypotheses from attributes"
component were significantly related to hypothesis generation performance.
An analysis of variance was performed on these data which showed that these
two components are additive, uncorrelated factors. Subjects who scored
below the median on both components generated, on the average, 2.15 "good"
hypotheses per problem while subjects who scored above the median on both
of these components generated, on the average, 3.6 "good" hypotheses per
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problem, 67% better. This study, therefore, has identified two cognitive
skills that appear to be important in hypothesis generation.

Individual differences in act generation. Large individual differences
were also found in act generation performance. In fact, they were so large
as to be the bane of our existence, and much of our effort was devoted to
developing experimental procedures and manipulations that were robust
enough to survive the error variance that these individual differences
created. In our many act generation studies, for example, the worst subject
typically generated two or three actions, while the best subject typically
generated more than 30.

However, one project (17), designed to explore expert act generation,'1 is the best example of the extreme impact that individual differences can
have on act generation performance. Our initial goal was to examine expert
act generation performance. However, as will be expioined below, we ran
into extreme individual differences in the course of the project, so
extreme that we could really say little about expertise in act generation,
but considerable about the effects of individual differences. For this
reason, we discuss this project under the heading of individual
differences, even though we have a section on expertise that immediately
follows this section.

Our original goal was to study expertise in act generation using
subject-matter experts. The experts and task that we chose for this purpose
were graduate students at the University of Oklahoma, and the task involved
generating all possible actions to improve the recruitment and retention of
high-quality and motivated graduate students into the experimental
psychology program. Graduate students generated actions in several
sessions, and spent approximately five hours each in the experiment
generating actions and making utility estimates over a period of at least a
week.

a-, The results were a surprise in the light of our earlier investigations
on expertise in hypothesis generation. In the hypothesis generation studies
we had used tasks that both experts and non-experts could perform, and we
found that both experts and non-experts displayed similar impoverished
hypothesis generation. (See the next section for a more complete discussion
of these results.) The graduate student experts, however, did remarkably
well, so well in fact that their act generation performance left little to
be desired! Graduate students typically generated three to four times as
many actions as the typical undergraduate, and these actions were of higher
quality. Figure 6.1 shows the performance of the graduate students in the
upper two panels, and typical undergraduate performance in the lower two
panels. Shown are the "limbs" and "limbs and branches" cumulative
performance scores described in chapter V. Although there are a number of
differences between the upper two panels and the lower panels such as the
nature of the problem, an informal comparison reveals the large difference

- . in performance.

We were suspicious of an expertise interpretation of this result
because our previous research on hypothesis generation suggested that both
experts and non-experts have similar cognitive deficiencies and because act
generation and hypothesis generation are so similar. Furthermore, we had
not used a non-expert group for purposes of comparison because the task
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chosen seemed to require more subject-matter expertise than any
undergraduate possesses.

Consequently, we decided to perform a second study as check on the
first study. We reasoned that if the effect in the first study was due to

expertise, and if we used a task where our graduate students were not
expert, we should see little difference between them and undergraduates.

The task we chose was the 'living" problem used previously, and the

graduate students used in the previous study and a group of urdergraduates

performed this task under the conditions that we had used in our earlier
* -, experiments.

We were also interested in exploring an alternate explanation for

these results. Graduate students are at the tip of the selection pyramid as
compared to undergraduates. A graduate student has survived four more
selection processes than the typical undergraduate. Graduate students have
graduated from college, self-selected themselves in terms of applying to
graduate school, been selected into graduate school, and all but one of the

graduate student subjects had been admitted into candidacy for the Ph.D.
program. One of the informal criteria used in the last three of these
selections is creativity and divergent thinking ability. Therefore, we were
interested in whether the good performance of the graduate students could
be due superior divergent thinking ability, and administered the "Alternate
Uses" test described above to both groups of subjects.

The results supported the divergent thinking explanation. First,
graduate students scored nearly twice as high as undergraduates on the
"Alternate Uses" test, and act generation performance correlated .43 (limb
and branch scores) and .49 (limb scores) with this test. Second, there was
almost no overlap in the two groups. The average graduate student generated

5.0 limbs (out of six), while the average undergraduate generated only 3.2.

Only four undergraduates exceeded the performance of the worst graduate
student on this measure. Branch performance was similar.

Figure 6.2 shows the performance scores of the graduate and the

undergraduate students. Notice that the graduate students perform in a

highly similar manner on a problem on which they are expert (figure 6.1)
and on a problem on which they are not expert. The undergraduates show
typical impoverished performance.

-' lie also investigated other alternative explanations for this effect.
Perhaps, for example, the graduate students were more expert on the Living

Problem because of their greater age and experience. If this is the case,

then age should be correlated with performance on this problem. Using a

large sample of subjects from a previous experiment, we found that the

correlation of age with performance on the Living Problem was -. 05.

It appears that selecting subjects in terms of divergent thinking

ability, which we inadvertently did in this project, has a profound effect

on their performance. This was the first occasion in which we used subjects
of the highest intellectual abilities, and the gain in performance is the
largest we observed in any of our studies.

- -iThis project both validates and qualifies our earlier conclusions. In

terms of validation, the good performance of the graduate students in
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general, and the performance of the best graduate student in particular,
suggests that our lover-bound estimate of performance 'is reasonable and
that this estimate is not artifactually too high. In'the absence of this
result our critics could easily make this claim, even though they would not
care to so if they inspected the raw data.

We should qualify our conclusion that act generators, like hypothesis

generators, are iwpoverished. The exceptional individual, individuals in
perhaps the upper few percent of the population, do not show impoverished
behavior. They do remarkably well. However, they are not the typical
individual. Our college student subjects are somewhat superior to but
closer to the general population. Their typical behavior we believe is
impoverished.

Generalizing to expert populations.

Expert hypothesis generation. Ilost of our studies employed
populations of college students, and the generality of results obtained
with college students has been questioned. Je deliberately included groups
of expert subjects in two studies (4, 7) as a check on the ,enerality of
our results obtained with college students. We were interested in
determining if experts also generated impoverished hypothesis sets and made
excessive plausibility estimates. Our purpose was not to show that
expertise has no influence on hypothesis generation. In fact, the
hypothesis generation tasks used were carefully chosen so that they could
be performed by both college students and expert subjects. Other tasks,
requiring the specialized knowledge of an expert, could not be performed by
college students, and so were not considered as candidate tasks for these
experiments.

Our initial bias was that expert subjects would show considerably
different performance than non-experts. iuch to our surprise, the experts
we studied were quite similar to non-experts in the two performarces in
which we had the most interest. In the protocol analysis study (7), expert

' mechanics generated almost exactly the same number of hypotheses as non-
experts, and both groups generated impoverished hypothesis sets. The

4.4 quality of hypothesis sets generated by the experts could not be compared
to that of non-experts due to task limitations, but both groups displaycd
similar excessive plausibility estimates.

Another study (4) was performed which involved expert curriculum
advisor subjects. This study will be described in more detail in the next

. chapter, but the same general conclusions can be reached from this study.
% The results suggest that observed deficiencies in hypothesis generation can

be generalized to experts. Ue do not claim that expertise is unimpcrtant in
hypothesis generation. We do believe, however, that even experts will
generate impoverished hypothesis sets and will evaluate these sets as being
more exhaustive than they really are.

It is important to realize that both of the e%pert populations studied
above had occupations where there is little selection in terms of divergent
thinking ability. It does not seem likely that selection as an auto
mechanic or as a curriculum advisor has much to do with divergent thinking
ability. This may be the reason why we found little difference 1ctwcen
expert and non-expert performance. It is also possible, although we have no
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evidence whatsoever for it, that much of the so-called "expertise" effect
is really an "intellectual abilities" effect, as most experts are selected

for training on the basis of their intellectual abilities. These questions
await further research.
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CHAPER 7. IMPROVING PRUDECISION PERFORM NCE

The primary goal of our research was not to find ways of improving
predecision performance. However, two projects were devoted specifically to
this topic, and this chapter mentions a number of other studies relevant to
this topic.

An artificial memory aid for hypothesis generation.

Our research suggests that many of the deficiencies in hypothesis
generation can be traced to difficulties in the hypothesis retrieval
process from memory. The aiding study (4) employed an artificial memory to
aid hypothesis retrieval. Hypotheses retrieved from the artificial memory
were displayed to the subjects, and they could add these hypotheses to the
set of hypotheses that they had generated if they wished. The artificial
memory supplemented those hypotheses that the subjects were able to
retrieve from memory, and exploited the differences between retrieval and
recognition in memory. The basic philosophy behind the aid is that subjects
may not be able to retrieve a plausible hypothesis from memory, but may be

able to recognize that it is a plausible hypothesis. Thus the aid is

designed to supplement the memory tettieval process.

We do not intend that this aid be implemented in its present form. The
purpose of the investigation was simply to see if such an aid was feasible
in certain limited situations.

The artificial memory. Hypothesis generators have used artificial
memories of various sorts to aid hypothesis generation. The reference books
of a doctor, or the maintenance manuals of a mechanic or an electronics
technician are examples of artificial memory aids. These aids are primarily
useful in routine situations were common problems are to be solved. They do
not usually suggest hypotheses for rare complexes of symptoms or data.
Nevertheless, these artificial memories are so useful that they are often
consulted, and we often deplore their lack in problem-solving situations.
Generally, the information contained in these reference books comes from an
authoritative source, and this information is so difficult to collect and
collate that it usually exists only for commonly encountered situations.

4 The problem of constructing an aid to hypothesis retrieval for
situations that lack authoritative reference materials is interesting.
Consulting an expert would be a possible solution, but Ve suspect that even
experts retrieve incomplete hypothesis sets. Several experts might jointly
create a more complete hypothesis set if their hypotheses were pooled; this
is one reason why doctors often use consultants when making difficult
diagnoses. One effective way to achieve more complete hypothesis sets is to
pool the hypothesis sets of individuals, as was done in the group research

:',: (8).

A difficult problem still remains. The task of creating a pooled
hypothesis set for every possible combination of data or symptoms is

* difficult or impossible for diagnostic situations where many data are
possible. For example, if there are N data possible, and if a simplifying

* assumption is made that these data are not mutually exclusive, then the
possible number of data complexes is 2N-I, potentially a large set.
Therefore iL is impossible in many situations to convene a panel of
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experts, and ask them to evaluate every possible data complex that might
occur; there simple may be too many complexes. Perhaps the answer is to use
expert judgment to construct an artificial associative memory, and then
interrogate this memory to find hypotheses that are logically consistent
with any complex of symptoms or data.

We constructed such an artificial memory. First we asked subjects
to generate as many hypotheses as possible for each datum. These hypotheses
were pooled across the subjects to create a more-complete hypothesis set
than any individual could generate. This set, with comparable sets for all
other possible data, was stored in a computer. Thus each datum had many
plausible hypotheses associated with it in the computer memory. In use this
memory was queried. The tagging model (1) developed for modeling human
hypothesis retrieval was used to retrieve hypotheses suggested by a complex
of data. Hypotheses were tagged in the artificial memory for each datum in
the complex, and those hypotheses that received more than a criterion
number of tags were retrieved from the artificial memory and displayed to
the hypothesis generator.

An evaluation of the artificial memory. A study (4) was performed
to evaluate the extent to which this artificial memory aided hypothesis

" '.generation. Subjects were given either one or three courses that a student
had taken and were asked to generate as many plausible hypotheses as
possible. When the subjects finished hypothesis generation, they either
started the next problem, or they were shown the results of the search of
the artificial memory. This display consisted of a list of hypotheses that
had been retrieved from the artificial memory, and the subjects were
allowed to add any hypothesis from this list to their hypothesis sets.
There were two groups of subjects. One group were junior or senior students
at the University of Oklahoma. The other group was more expert. This group
consisted of Curriculum Advisors who were employed by the university to
give students advice on course offering and schedule planning. These
individuals are experts in the sense that they are intimately familiar with
the typical courses of study for each major.

Performance was measured by calculating the posterior probability
of the sets of hypotheses that the subjects generated in the aided and
unaided conditions. This probability is the probability that the set of
generated hypotheses contains the "true" hypothesis. Subjects were told to
ignore implausible hypotheses (P< .02), and, for this reason, an optimal
hypothesis generator should have had a hypothesis set that had a
probability 0.906 for the average problem when implausible (P<.02)
hypotheses are excluded from the calculation.

The unaided performance of both groups was impoverished. Non-
experts had mean hypothesis set probabilities of .477, while experts had
mean probabilities of .506. This difference is statistically reliable, but
experts performed similarly to non-experts, in that boLh groups generated
impoverished hypothesis sets. These number are directly interpretable. It

% will be recalled that these probabilities are the probability that the true
% hypothesis is contained in the set of generated hypotheses. An optimal

% hypothesis generator who generated all hypotheses whose posterior
probability was greater than .02 would have a hypothesis set probability of
0.906. Therefore, the hypothesis sets of both experts and non-experts only
contained the correct hypothesis about half the time.
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Both groups increased the plausibility of their hypothesis sets when
they used the aid. The non-expert's aided hypothesis sets had a mean
probability of .57, while the experts mean probability was .603. The
difference between groups was not reliable, but both groups were aided
significantly by the aid. The experts showed an improvement .133, while the
non-experts showed an improvement of .185 over their unaided performance.
The aid, therefore, provides a noticeable, but not dramatic, gain in
performance.

Perhaps the most interesting result comes from an examination of
those hypotheses generated by the subjects, and not suggested by the aid.
The posterior probabilities of these hypotheses totaled less than .01. In
other words, the aid generated nearly all of the hypotheses that subjects
were capable of generating, and had it been used as the sole source of
hypotheses it would have been better than an unaided subject, and equal to
an aided subject using the aid. The concept of using an artificial memory
to aid hypothesis generation was shown to be viable for those situations

: where it seems worthwhile to construct such an aid.

As the artificially memory used was one that nodeled unaided human
performance, this result is similar to the "bootstrapping" result reported

- by Dawes & Corrigan (1974) in that a model which captures the behavior of a
decision maker can sometimes exceed the performance of the unaided
individual. If the artificial metnory were to be optimized for aiding
purposes, the aid would probably perform noticeably better.

Other possibilities for improving hypothesis generation performance.

Some of the results obtained incidentally during our study of the
hypothesis generation process might also be usefully employed to improve
hypothesis generation. These results will only be mentioned briefly here
because they have already been discussed previously in chapters 4 and 6.

Group hypothesis generation. Our study of group hypothesis
generation strongly suggests that using a group of several hypothesis
generators will yield a considerable gain in performance. These results
also demonstrated that that social interaction during hypothesis generation
degrades performance; a better course would be to use a synthetic pooling
of hypotheses such as that done in the group study (8) and the aiding study
(4). Depending upon the importance of the problem, synthetic groups of
varying sizes can be used, and the pooled hypothesis sets of large groups
result in a dramatic improvement in performance (8).

Debiasing to encourage alternate schemata. If the hypothesis
generator is encouraged to try to think of another schema which might
explain the data, the hypothesis sets are less biased by pre-existing
hypotheses (6). This procedure should be routinely employed as it cost
almost nothing to use.

Debiasing plausibility estimates. Steps which can be taken to
reduce the bias in plausibility estimates are to help the hypothesis
generator populate the set of unspecified hypotheses (2). Not only does
this reduce the bias in these estimates, but it might be expected to
encourage the hypotheses generator to continue to search memory beyond the
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point were such searches normally stop.

Selecting good hypothesis generators. Finally, it seems possible to

select good hypothesis generators by means of tests which measure divergent
thinking, and our study on this topic (5) suggests that such paper-and-
pencil tests are effective predictors of hypothesis generation performance.

Improving problem analysis and definition in act generation.

One of the characteristics of ill-defined problems (Taylor, 1974) is

that the decision maker often has to analyze the problem before starting
work on it. tie believe that one of the first steps that a decisien maker
takes in analyzing a problem is to define it. Problem definition involves
the identification of goals, problem constraints, and "operators" or

C.,; "control variables" which can transform the present state into tne goal
state (Newel1 & Simon, 1972). The impoverished act iseneration performance
of the typical subject may be due to incomplete proilew analysis and
definition. For example, subjects in the Parking problem almost always
thought of building more parking spaces, but only 37% thought of a way to
use the existing parking space more effectively, and only 231 thought of
carpooling. Data such as these suggests that the typical subject defines
the problem too narrowly, thus limiting the variety of actions that can be
generated. Why donrt subjects think of the obvious?

Our first stuay in this project (14) examined why subjects sometimes
did not generate what seemed to us to be obvious solutions to the probler.
We examined two possible explanations. The first explanation is that our
subjects were simply ignorant of parking solutions; what were obvious
solutions to us did not exist in their memories in any form.

The second explanation was that the information necessary to generate
these obvious actions is available in memory, but inaccessible to the
subjects because of the way they defined the problem. Perhaps the subjects
are incapable of generalizing from the problem that they are working on to
other similar problems because they did not recognize the similarity of the
Parking problem to these other common problems. For example, one very
effective action that only 10% of the subjects generated is to paint the
lines of the parking spaces closer. together to exploit the change to
smaller cars in the University community. Subjects probably did not have
this solution in memory directly as a solution to the Parking problem.
However, they all must use other versions of this strategy on a frequent
basis to make room for a book on a crowded bookshelf, or to fit another
passenger in a car. Why were they unable to make this inductive leap?

In the first study in this series we investigated the effect of
supplying the subjects with either generic strategies for solvir.g the
problem, or specific instances of these generic stratcgieL. Wc were
interested to see if subjects possess the information to iwplenent the
generic strategies if these strategies are suggested to tten. We were also
interested to see if subjec:, could generalize the arecific instances of
the generic strategies to create other, related solutiens which are bssed
in the same generic idea.

The subjects generated all the actions that they could think of in the
Parking problem. Immediately after they said that they could think of
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nothing else, they were given either generic or specific instances of the

same generic cues. Table 6.1 shows the results.

TABLE 6.1
ACT GENERATION PERFORHIALNCE IN THE CUEING EXPERIIiENT

BEFORE GAIN AFTER
CUEING CUEING

LILIBS GENERATED (6 POSSIBLE)
GENERIC CUES 4.0 1.7
SPECIFIC CUES 3.1 UIS 0.5 P<.Ol

BRANCHES GEN4ERATED (40 POSSIBLE)
GENERIC CUES 8.2 3.4
SPECIFIC CUES 7.2 LIS 1.3 P<.O1

PERFORkAIICE SCORE
GIINERIC CUES 439.7 172.4
SPECIFIC CUES 397.0 US 65.2 P<;O01

As can be seen in table 6.1, the two groups were approximately equal
in performance prior to cueing. The new solutions generated after cueing
are shown in the right-hand column. The generic cue group generated
significantly more limbs, branches, and scored higher in terms of the
performance score discussed in Chapter 5. The generic subjects clearly are
capable of implementing a generic strategy if it is suggested to them, so
the information necessary to generate more solutions is available in some
form if they are given the kernel of the idea. When we said, in effect,
"Can you think of a way to get more parking without building more parking
spaces?", the subjects could think of a solution such as painting the lines
in a parking lot closer together.

Notice the striking i;ability of the subjects given specific instances
of these same generic cues to generalize these cues and discover the kernel
of the cue and exploit it. When we said, in effect, "Can you think of a
similar solution to painting the lines closer together in the parking
lots?", most subjects could not think of redesigning the lot to increase
the number of cars that can be parked, or segregating cars in the lots
according to size. I-lost of the actions generated by the specific cued

subjects involved minor embellishments of the specific cues, which did not
increase their scores.

.'4 These results were obtained just a few minutes after the subjects
claimed that they could think of nothing else. They demonstrate that at
least some of the earlier failures to generate the "obvious" are due to the

-.,'. subject's inability to access information when it is stored as solutions to
oth.er problems. If we "hit them over the head" with a generic cue, they
were usually able to generate an instance of it, but they usually were
unable to extract the kernel of a specific cue and use it to generate other
related ideas.

The second study in this series explored the "incubation effect" (Gick
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"-- & lolyoak, 1979). Subjects were asked to come back a week later for
"another experiment" when they had completed the Parking problem. When theyreturned, they resumed work on the Parking problem. A weeks "incubation"

Va.- did improve performance, but most of the gain was due to elaboration ofA" ideas generated in the first session. Most of the actions generated were
new branches on the limbs discovered in the first session; the average
subject generated 0.9 new limbs in the second session. Apparently the

"a- passage of a week does not cause a noticeable redefinition of the problem.

The pattern of results obtained is consistent with the notion that
subjects do not perform an exhaustive analysis of the problent leading to a
complete problem definition. To the extent that the problem is incompletely
defined, subjects may lack the "generic" cues that will aid them in
generating a wide variety of actions.

The third study in this series explored the effects of training in
- J'*problem analysis and definition on act generation performance. Subjects in

an organizational training group were given brief training in strategies to
analyze shortage problems (the Parking problem is a shortage problem), and

1-' exercised these strategies by working on a shortage problem involving
starvation in India. Then they were invited to use these same strategies to
analyze the actions that they had previously generated in a previous
session. Two other groups were used. One group spent a comparable amount of
time memorizing actions generated in a previous session, and the third
control group was simply asked to return for another session, and on their
arrival immediately started working on the Parking problem.

4Both the organizational training group and the "memorizatiotn" group
performed significantly better than the control group, as shown in table
6.2. The training group generated approximately twice as many new limbs as
did the control, but the difference between the training group and the
"emorization group was not statistically reliable.

TABLE 6.2
I.AJOR CATEGORIES GENERATED IN EXPERINEN'T 2

(SIX CATEGORIES ARE POSSIBLE)

DAY I DAY 2 GAIN

ORGi NIZATIO11AL TRAINING .4.0 1.5 ---

MEMORIZATION CONTROL 4.0 1.0 ----I I P<.05

CONTROL 3.7 0.7 ---------- I

However, when we examined the frequencies of generating various
categories of actions, we found that the organization group was
significantly better than the memorization group as shown in table 6.3. As

S.'. can be seen from inspecting this table, the control subjects spent most of
t eir time "dreaming up" more variations of ideas they had generated in
session 1, concentrating on alternate transportation, and diffe !nt places
to plant parkin6 lots. However, subjects trained in problem analysis and
organization tended to generate more actions to use the present parking
space more effectively, reducing the number of people who want to park, and
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various indirect strategies for solving the problem. Therefore, our
training was effective in getting the subjects to analyze the problem more
completely.

-. o ...

TABLE 6.3
SESSION 2 FREQUEI'CIES OF GENERATING ACTIONS IN SELECTED CATEGORIES

[H AJOR CATEGORY ORGANIZATION I EHORIZATION CONTROL

ALTERNATE FORHS OF TRANSPORTATION 37 29 72
BUILD 14ORE PARKI1G 34 52 58
USE EXISTING PARKING MORE

EFFECTIVELY 15 16 10
REDUCE NUIiBER OF PEOPLE MRO

'"'" PARK 43 26 20
INDIRECT STRATEGIES 17 10 3

(ORGANIZATIONAL GROUP SIG. DIFF. FROHI UEHOLIZATION GROUP P<.001)

When considering the three studies in this project as a whole, we get
the impression that our subjects have the ingredients to bake a cake, but
no recipe. Training in problem analysis and organization improves the
accessibility of possible solutions to the problem. Subjects do possess the
information to create instances of generic strategies, but apparently do
not discover all of the generic strategies in the absence of training.

.4. Their ability to exploit past experience seems to be limited by their
difficulty in extracting the generic kernels from other, related ideas.

Other ways of increasing act generation performance.

Synthetic groups. As previously discussed in Chapter 6, pooling the
responses of several act generators is a very effective way of getting a
more complete set of possible actions for decision making. It is of the
utmost importance, however, that these groups not be allowed to interact
socially during the actual act generation, as socially interacting groups
are little or no better than a single individual. Information exchange such
as we used, or that used in the Delphi procedure, may be of benefit, but
should not be expected to to produce enormous gains in performance.

Selecting act generators on the basis of divergent thinking ability.
Also, as discussed in Chapter 6, selecting act generators on the basis of
divergent thinking ability is very effective. If individuals can be found
who excel at this ability, their performance will be several times better
than the typical, unselected individual.

Overall recommendation.

Our research on act generation suggests that the typical act generator
--." is impoverished, generating only a small subset of the acts worth

considering. If the importance of the problem warrants it, we suggest
simultaneously using all three techniques that we have discovered lead to

* :better act generation. First, we recommend that individuals be selected for
good divergent thinking ability, the higher the better. Second, these
individuals should be trained in problem analysis and definition. Third,
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-' they should work in small, non-interacting groups, and their ideas pooled.
Although we have not studied these three techniques in use simultaneously,
we see no reason why they should not be effective in concert. The net
result, we believe, will be marked improvement in performance.
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CH(]AL ILTU SUM ARY OF VEAT HAS 53 LEARNED

Presented below is a summary of major accomplishments and conclusions
developed in our hypothesis generation contract and our act and outcome
generation contract as an aid to those who wish to get an overview of our
conclusions. As with any compact summary, these conclusions are not
completely qualified, and the reader is referred to the earlier parts of
this monograph, or even better, to the original technical reports for more
complete discussion and qualification. Pertinent technical reports are
indicated by a number, for example, (18). Following the summary
conclusions, a section is presented which discusses the major conclusion
from both projects.

Hypothesis generation:

I One goal of hypothesis generation is to provide a pool of hypotheses
that are potential explanations for a set of data. A model for retrieving
hypotheses from memory was constructed that fits the data well. It appears
that a hypothesis need not be associated in memory with all data for
retrieval to take place, nor are hypotheses that are only associated with a
single datum typically retrieved. It was estimated that hypothesis are
retrieved from memory if tagged by two or three data (1).

2. If hypotheses are retrieved from memory using part of the data, a
'consistency check" is performed where the newly retrieved hypothesis is

* checked for consistency with any data not used in its retrieval (3).

- 3. Consistency checking appears to be a rapid, logical checking process
involving high-speed semantic verification and terminates if a hypothesis
is found to be logically inconsistent with the data (3).

4. Consistency checking results in a number of hypotheses (approximatcly
two, in the task used) being rejected as logically inconsistent before th
first consistent hypothesis is found and the hypothesis generator is aware
of some rejected hypotheses (3).

5. Hypothesis retrieval from memory seems to be an activation process where
many hypotheses are activated for further consideration and evalvaticn.
Consistency checking is the first part of the evaluation process which
narrows the set of hypotheses the hypothesis generator considers (3).

6. Hypotheses that are retrieved and checked for consistency form a pCol of
-( hypotheses that will be processed further for plausibility if the task

warrants it. This pool is quite incomplete, and only contains tkhe curroct
hypothesis about half the time (1, 2, 3, 4, 5, 7, 9).

7. The process of plausibility assessment is the process where the decision
maker decides if the hypothesis in question is sufficiently plausible tc be
considered as a canaidate explanation for the available data. It involves a
judgment of the relative likelihood of the hypothesis in question with
respect to other hypotheses that have been generated, and also rith respect
to hypotheses that have not been generated (1, 2).
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0. Subjects have only a very rough idea of which hypotheses ik their
hypothesis sets are the most plausible candidates. Their orderings the
hypotheses in terms of likelihood, or estimates of the likelihood, are only
weakly related to the veridical orcerings or values (1).

9. Subject's plausibility estimates are excessively certain, sometimes iy
as much as a factor of three. Tihis excessive certainty is probably due to
the uravailabiiicy of hypotheses that were not generated. This is true for
experimenter-supplied hypotheses, or subject-generated hypotheses (1, 7).

10. The hypothesis generator typically benerated supplemental hypotheses if
new data arrives tnat makes the existing hypothesis set less plausible. An
increasingly strict, sliding criterion for admission of new hypotheses to
the set seems to be used. New hypotheses are admitted mainly if they are
"leading contenders", that is, ii they are close competitors with the best
hypotheses that are already iL the set (2, 7).

11. Group hypothesis generation is markedly superior to that of individuals
only if the subjects are in a nominal or synthetic group. Socially
interacting subjects are somewhat better than individuals, but quite
inferior to nominal groups. These conclusions are based on a model that
partitions group performance into social and informational components (8).

12. Interpretations are made of the data used in hypothesis generation, and
these schematic interpretations are sometimes used as retrieval cues rather
than the data themselves (6).

13. An artificial memory can be developed to aid the hypothesis generation
process. The aid investigated used a artificial memory based on our model
of hypothesis retrieval.process. While aids based on other retrieval
schemes might perform better, the aid investigated, if used as the sole
source of hypotheses, was as good as the aided subject (4).

14. There were a number of replications of the finding that both expert and
non-expert hypothesis generator seem to suffer from the same cognitive
deficiencies. That is, both groups exhibited impoverished hypothesis sets,
and believed that these sets were much more complete than they actually
were (See 9 for a summary.).

15. It is possible to predict hypothesis generation ability to some extent.
Hypothesis generation ability seems to be related to divergent thinking
ability, and does not appear to bear much relation to inductive reasoning,
achievement, general mental abilit), or episodic memory. There seems to be
two additive components involved in divergent thinking: the analysis of the
problem into its implicit dimensions, and the retrieval from memory using
these implicit ;imeusions. Subjects who score above the median on both of
these two components do 671 better than snbjects who score below the median
(5).
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Act and outcome generation:

16. Act generation is the process of creating possible actions that may
solve a decision problem. Outcome generation is the process of specifying
possible outcomes of actions. Act generation of our typical subjects can

also be described as impoverished; subjects typically generate two or three
ideas worth implementing in situations where there were typically 30 to 40
possible ideas that could be considered (10).

17. A technique for calculating a performance score was developed that
combines both quality and quantity of generated actions. This score is a

lower-bound estimate of optimal performance, and is useful for measuring
both the breadth and depth of a subject's performance (10).

18. The generality of conclusions reached using the performance score was

examined by using either experimenter-generated hierarchical
representations of the decision problem, or representations based on

cluster analysis. In addition, the source of the utility estimates used in

the score was examined. The conclusions were similar, irrespective of how
the score was calculated (10).

I. -

19. It appears that the limited act generation performance of subjects is

not due to lack of motivation. Substantial incentives for good performance
in terms of quality, or quantity did not result in appreciable gains in

performance (12).

20. Subject's post-experimental estimates of the number of good actions

. that existed that they could not think of are about 2.5 to 5.0. This

*result, replicated in several studies, suggests that they believe that they

have thought of nearly everything worth considering, when this is far from
the case (12).

*" 21. The subjective representation of the problem space in act generation

problems was studied using multidimensional scaling and cluster analysis.
Subjects apparently did not see the problem studied as a member of a
generic class of shortage problems, but rather in fairly contrete terms,

being concerned with quite specific strategies for solving these problems
(11).

22. Interacting small groups have the possibility of exchanging information
in a synergistic fashion and thereby improving their performance. The
additive model developed previously for small group researth in hypothesis
generation was extended to allow estimates of the size of the information
interchange component. Information interchange was found to result in a
6.9% improvement in performance. Host of the "synergism" that occurred was
minor variations of the other person's ideas; the average utility of acts
was not increased by information exchange. Synthetic groups were again
found to be quite superior to interacting groups' (13).

23. The decision maker's "frame" or "perspective" was not found to have
much of an effect in laboratory simulations. This negative result should be

interpreted with caution, since the simulation may have lacked conditions
necessary for these eifects to occur (14).

24. The act ot explanation, or creating a causal scenario, causes
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substantial and persistent changes in the way that the decision maker view:s

a decision problem. The number of success and failure outcomes generated in

an outcome generation task do not depend on the nature of the initial

explanation made, as reported previously. However, the causal factors used
in scenarios, the importance weightings of causal factors, and subject's
predictions about how these factors would turn out in the future all varied

. with the type of initial scenario constructed (15).

25. Apparently, the changes in the way a decision maker views a problem
after constructing an initial scenario is due at least in part to initial
inferences that the subjects make from the case history. These changes do
not seem to depend on selective encoding of the case history. The
inferences which were used to support the initial explanation apparently

N persist and ccutinue to be used in constructing alternate causal scenarios
leading to different outcomes (15).

26. Divergent thinking ability apparently plays an important role in act
generation as well as in hypothesis generation. In a study of expertise in
act generation, it was found that graduate student "experts" displayed
excellent act generation performance, quite unlike that of an unselected
subject. A second experiment was performed where the expertise of the
graduate students should have been irrelevant, and the graduate students
continued to show the same fine performance. As the graduate students
scored about twice as high as undergraduates on measurements of divergent
thinking, these results demonstrate the importance of divergent thinking
ability in act generation, and suggest that the result in the initial study
was probably due superior divergent thinking ability. Clearly, the earlier
conclusion regarding impoverished act generation ability should be
qualified with regard to individuals who are excellent divergent thinkers
(17).

27. Subjects can usually implement a generic strategy if they are cued with

the kernel idea. However, if they are cued with a specific instance of
that generic strategy, they are only rarely able to discover the generic,strategy and generate other, related acts based on that strategy (16).

28. The "incubation effect" is observed if a problem is set aside for a

period of time, and then work is continued. Such a passage of time
apparently does not cause subjects to reanalyze the problem again. Rost
acts generated after a one-week rest were minor variations of the same
generic ideas. Subjects rarely rethink the problem when resuming work on it
(16).

29. Training in problem analysis and definition helps subjects generate a
wider variety of actions, particularly those involving indirect strategies
for solving the problem. This effect apparently occurs because they use a

broader and more general problem definition (16).

30. A number of suggestions were made for improving predecision generation
performance of hypotheses, acts and outcomes. In our opinion, the most

effective way of improving performance in this area would be to do all of

the following simultaneously: 1) Select generators who have excellent

divergent thinking ability, 2)Y. Train them in problem analysis and

definition, and 3) have them generate acts or hypotheses in small, non-

interacting groups (13).
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The "Fat and Happy" Hypothesis and Act Generator.

If we single out the most important conclusion of our research, the
one with the broadest implications to decision theory, we arrive at the
following conclusion:

Hypothesis generation* One major conclusion supported by this
research is that sets of hypotheses generated by our subjects were
impoverished, but subjects estimated that these sett were more complete
than they actually were. Similar results have been obtained using a wide
variety of tasks, several experimental strategies, and several response

": modes. Although some variables oo effect estimates of the extent of
, - hypothesis generation deficiencies, we have found no exceptions to the

general conclusions that subjects generate impoverished hypothesis sets and
overestimate their completeness.

During this project we have employed a variety of hypothesis
generation tasks, partially to determine if Our results were task-specific.
We employed tasks where subjects generated hypotheses about the majors of
undergraduates, occupations of skilled workmen, and identities of States of
the Union (1, 2, 4' 9). Other tasks involved generating the identity of

- animals (3), and defects in an automobile (7). Two experiments used
problems where the object was to generate hypotheses about an unknown
geographical area (5, 6). In all of those experiments where a measure of

- hypothesis generation performance was obtained, subjects generated
impoverished hypothesis sets. In all of those experiments whereplausibility estimates were obtained, subjects were excessive in their

"- assessments of the completeness of their hypothesis sets.

The same general conclusions that were reached using college
students seem to be justified for expert subjects (4, 7). Although this
variable was investigated in only two studies, the results suggest that
experts and non-experts have similar difficulties.

In one study, it was shown that plausibility estimates were
excessive irrespective of whether the subjects were judging hypothesis sets
that they had generated or hypothesis sets supplied by the experimenter. In
this same study, it was shown that the plausibility estimation measurement
technique used in many of these studies produced much the same results as
probability estimation.

Act generation perfornance. Similar conclusions were reached for act

generation process. Although only two tasks were used because of the

extensive effort necessary to develop performance measures, a replicable
pattern of results was found in 5 studies (10, 12, 13, 16, 17). Subjects
usually could generate two or three actions which were good candidates for
possible adoption in situations where there were twency or thirty actions
that could be considered. This effect does not appear to be due to lack of
incentive, an emphasis on quality or quantity, the source of the
hierarchical structure, or the utility estimates used in the analysis.
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Also, as in hypothesis generation, subjects believed that their set of
actions were much more complete that it actually was. They believed that
2.5 to 5 good ideas still remained to be generated, when in fact there were
about 20 to 30 actions that could have been considered.

The only exception we've encountered in regard to this general picture
is the performance of the exceptionally good divergent thinker. These
individuals are rarely found, being in the upper few percent of the general
population in regard to this ability, but their performance approaches
optimal performance (17).

These results, taken as a whole, present a rather unflattering
picture of the hypothesis or act generator. Hypothesis or act generators
may feel "fat and happy" about the completeness of their hypothesis or act
sets, when the available data about their performance suggests that they
should feel "thin and worried." Generated hypothesis sets lack important
hypotheses and generated act sets lack important actions, yet when these
sets are evaluated, the hypothesis or act generator feels that they are
more complete that they really are.

Our data suggests that the explanation for the "fat and happy"
syndrome lies in deficiencies in the memory search process. The subjects'
inability to access all plausible hypotheses or all effective actions
available in memory seems to be the underlying cause of both poor
generation and the feeling that these sets are almost complete. The paradoxis that these results suggest that hypothesis and act generators may be

. '" * unaware of their deficiencies because the difficulty in retrieving
hypotheses and acts from memory also affects the evaluative process where
they assess the completeness of their performance.

V8.

a .

"- '. 8.6



QlATER 9. RECO1MM IOHS FOR FURTHER RESEARCH IN PREDECISION

It probably would be counter-productive to make an encyclopedic list
of recommendations for research for projects as large as those described in
this monograph. Each study we performed raised more questions than it
answered. Spne of these questions are discussed in the individual technical
reports. Only the most general recommendations are presented in this
chapter.

The desirability of more research in predecision processes.

Given the advanced state of the art in decision theory, and these
preliminary results in hypothesis, act, and outcome generation, we believe
that the investigation of predecision processes should receive a priority
equal to, or perhaps greater, than that of traditional decision theory. We
believe this because it appears that more improvement in decision making
can result from an improved understanding of predecision processes than
from an equal expenditure on further refinement of the optimization
techniques of traditional decision theory. Decision theory as a topic has
received hundreds, or perhaps thousands of experimenter years of

* "investigation. We have spent only six, yet our results suggest that the
problem structuring of decision makers is so incomplete that it seems
rather pointless to spend further effort developing optimization techniques
for what may well be incomplete models until predecision problem
structuring is better understood.

Based on our research findings, we have three primary recommendations,
each of which is discussed below.

First, we suggest that other experimenters, preferably those who are
skeptical about our general conclusions and findings, be invited to confirm
or disconfirm our major results and conclusions with other tasks and in
other contexts. While we have had the advantage of examining the raw data
in many similar studies, we will be the first to acknowledge that it is
possible that we may possess some of the biases that we accuse our subjects
of having. Results obtained in a single laboratory are unlikely to make a
major impact on the decision theory field until they are independently
confirmed. While this process has started, as witnessed, for example, by
the work of Pitz, et al. (1980) and Thompson (1983), it should be
accelerated.

Second, our efforts have only scratched the surface of a topic which
we believe will grow to be as large as the decision theory topic. Most of
our research has been devoted to hypothesis and act generation, with
relatively little attention being paid to outcome generation. Although we
are quite proud of what we have accomplished in this area, it is at best a
beginning. Much of our effort was devoted to developing new experimental
paradigms and measurement techniques, and hopefully research that builds on
our work will be more straightforward, and involve fever false starts. We
do not believe that our results are definitive on any of the topics that we
investigated, and feel that this area of research is wide open and waiting
for conquest.

Third, there are important predecision topics that have received
relatively little or no attention. For example, our tentative theory of
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problem detection was included in this monograph with some fear and
trepidation because we have done no empirical research on this topic, and
are unaware of any other research done in this area from a decision-making
perspective. We included this theory for the sake of completeness as it
clearly is one of the most important of the predecision topics (cf. Corbin,
1980). We could have included a chapter on problem analysis and definition,
another unexplored area. Hovever, our thinking on this topic is little
advanced from that described in our single study on this topic (16).
Research on both problem detection and on problem analysis and definition
will be our next several topics for research.
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11. TECHNICAL REPORTS WITH ABSTRACTS

The hypothesis generation contract (N00014-77-C-0615):

1. Gettys, C., Fisher, S., and liehle, T. Hypothesis generation and
Plausibility assessment (Tech. Rep. TR 15-10-78). Horman, Ok.:
University of Oklahoma, Decision Processes Laboratory, July 1979.

A hypothesis generation model is described which consists of two
subprocesses. Hypotheses are retrieved from memory using several data as
retrieval cues in the hypothesis retrieval sub-process. These hypotheses
are then evaluated by a plausibility assessment sub-process. Two
experiments are described. A memory retrieval experiment examined
hypothesis retrieval from memory using multiple data. A memory-tagging
model is described which predicts the probability of multi-data hypothesis
retrieval. Performance in this task was poor; subjects rarely generAted an
adequate hypothesis set.: A second plausibility assessment experiment was
performed where subjects estimated the plausibility of specified hypotheses
using varying amounts of data. Plausibility assessments for specified
hypotheses were usually extreme in comparison to the posterior odds
calculated by Bayes' theorem. This result was also attributed to
deficiencies in hypothesis retrieval from memory.

2. !ehle, T., Gettys, C., ilanning, C., Baca, S., and Fisher, S. The
availability explanation of excessive plausibility assessments (Tech.
Rep. TR 30-7-79). Nqorman, Ok.: University of Oklahoma, Decision
Processes Laboratory, July 1979.

The assessment of hypotheses in hypothesis generation involves a
comparison between those hypotheses that have been generated (specified)
and those that are not generated (unspecified). This study investigated the
"availability explanation" (Tversky and Kahneman, 1973) for subjects'
overconfidence in estimating the probability of specified hypotheses. The
conjecture is that subjects have difficulty retrieving unspecified
hypotheses; a complete set of candidate unspecified hypotheses is
unavailable during assessment. Therefore, the underpopulated set of
unspecified hypotheses is regarded as less probable and the specified set
is regarded as more probable. A control group in this study replicated
previous findings of overconfidence for specified hypotheses. Two
manipulations to increase the availability of unspecified hypotheses were
investigated. One manipulation involved explicitly requesting subjects to
populate the unspecified set. The other manipulation consisted of computer
presentation of candidate unspecifiea hypotheses. Although in a normative
sense, neither manipulation should have affected judgments, results
indicated that assessment overconfidence for both experimental groups was
reduced. These results support our conjecture that the availab,.iity
heuristic is at least partially responsible for subjects' e.:ce!. ,
behavior in evaluating specified hypotheses.

,.', 11.1
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3. Fisher, S., Gettys, C., Manning, C., Hehle, T., and Baca, S. Consistency
checking in hypothesis generation (Tech. Rep. 29-7-79). Norman, Ok.:
University of Oklahoma, Decision Processes Laboratory, July 1979.

Three experiments were performed to provide evidence that the
generation of hypotheses in response to multiple data may involve two
different cognitive processes. First, a candidate hypothesis may be
retrieved or activated in memory in response to only part of the available
data. This candidate hypothesis may then be checked for consistency against
the remaining data. This latter process is called "consistency checking."
Experiment 1 was performed to provide evidence that consistency checking
occurs during hypothesis generation. Subjects were able to recognize
hypotheses w'hich were retrieved during a hypothesis generation problem but
not emitted as hypothesis responsesi suggesting that consistency checking
was responsible for the rejected hypotheses. Experiment 2 indicated that
the amount of time needed to process an additional datum in a consistency
checking task was less than an estimate of the time needed to process an
additional datum in hypothesis retrieval. The results suggest that
consistency checking is a high-speed verification process rather than a
slower search process. Experiment 3 was performed to provide evidence that
consistency checking is a self-terminating proces-s. Subjects' latencies
depended upon the position of a disconf irmingdatum within a data set,
supporting this conjecture. The results generally confirmed the existence
of a high-speed verification process in hypothesis generation and also
suggest that the generation of hypotheses in response to multiple data
occurs as a result of dual processes.

4.- Gettys, C., t1ehle, T., Baca, S., Fisher, S., and Manning, C. A memory
retrieval aid for hypothesis generation (Tech. Rep. TR 27-7-79).

d iNorman, Ok.:University of Oklahoma, Decision Processes Laboratory,
July 1979.

Hypothesis generation consists of retrieving explanations for data
from memory, and assessing these explanations for plausibility. Previous
research has established that human hypothesis generation performance is
deficient in both hypothesis- retrieval and assessment. This study
investigates an aid for the hypothesis retrieval process which is based on
a model for hypothesis retrieval developed by Gettys, Fisher, and Nehle
(1978). A computer simulates the human -hypothesis retrieval process by
searching an enriched associative memory which contains the associations of
a number of individuals in the form of. lists of hypotheses for each datum.
When the data of a decision problem become known, the appropriate lists are
searched by the computer. Hypotheses that are common to most or all of the
lists are suggested to the user, who assesses them for plausibility. An
experiment was performed to determine the utility of the aid for both
expert and non-expert users. The aid produced a substantial gain in
performance for both groups, of users, suggesting that further development
of the aid would be worthwhile in decision situations which are repeated
often enough to warrant the creation of an enhanced artificial memory. Also
discussed are several techniques for implementing the aid, and determining
the maximum gain in performance that the aid can produce.
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5. Manning, C., Gettys, C., flicewander, A., Fisher, S., and 1lehle, T.
Predicting individual differences in hypothesis generation (Tech.
Rep. TR 28-7-79). liorman, Ok.: Unive sity of Oklahoma, Decision
Processes Laboratory, July 1979.

Two experiments were performed to determine the extent to which
individual differences in hypothesis generation could be predicted. In the
first experiment, several published tests of creativity were used as
predictors of hypothesis generation ability. The Alternate Uses test was
the best predictor of hypothesis generation performance. In a second
experiment, measures of achievement, general mental ability, and
information were included with Alternate Uses as predictors of performance.
Again Alternate Uses was the best predictor of performance. Several
variants of the Alternate Uses test were also employed to isolate the
components of hypothesis generation. It was found that two components were
involved: retrieval of implicit dimensions of the objects and retrieval of
uses when the dimensions are explicitly provided. The latter component was
found to be by far the most important. It was concluded that good
hypothesis generators have skills that enable them to effectively retrieve
information stored in memory.

6. Manning, C., and Gettys, C. The effect of a previously-generated
hypothesis on hypothesis generation performance (Tech. Rep. TR 8-5-
80). Norman, Ok.: University of Oklahoma, Decision Processes
Laboratory, August 1980.

An experiment was performed to determine what effects exposure to a
previously generated hypothesis would have on subsequent hypothesis
generation. The results showed that hypothesis generation performance is
relatively unchanged if the previously-generated hypothesis is consistent
with a salient interpretation of the data. However, if the previously-
generated hypothesis is consistent with a relatively unusual interpretation
of the data, then subjects use both the interpretation that is consistent
with the hypothesis and the more commonly used interpretation as cues to
retrieve hypotheses. In this case, resulting hypothesis sets included more

4varied types of hypotheses. Instructions to consider other interpretations
of the data also resulted in subjects' generating richer hypothesis sets.

7. Rlehle, T. Hypothesis generation in an automobile malfunction inference
task (Tech. Rep. TR 25-2-80). Norman, Ok.: University of Oklahoma,
Decision Processes Laboratory, February 1980.

Expert and novice subjects generated hypotheses in an automobile
troubleshooting inference task. Data collected included subjects verbal
protocols during the inference tasks and subjects' estimates of the
probabilities of their generated sets of hypotheses. Analyses indicated
that both expert and novice subjects had difficulty generating complete
sets of hypotheses and were overconfident in their subjective estimates of
the probabilities of generated hypotheses.

11.3

I . . . . . . . . . ..3



8. Casey, J., Hehle, T., and Gettys, C. A partition of group performance
into informational and social components in a hypothesis generation
task (Tech. Rep. TR 3-3-80) llorman, Ok.: University of Oklahoma,
Decision Processes Laboratory, August 1980.

A technique is presented for partitioning group performance into two
components: a component due to the increased information possessed by the
group and a component representing the change in performance due to social
interaction. The hypothesis-generation performance of individuals working
alone was compared to the performance of interacting groups of four. The

d, particular task employed permitted calculations of the veridical
probabilities of generated sets of hypotheses. AtLalyses of results were
based on a new method, obtained by poolinb hypothesis sets from individual
subjects to obtain "synthetic" groups. This method permits direct
comparisons of interacting and synthetic groups' hypothesis-generation
performance. Using this method, we found that groups of four subjects were
equivalent to synthetic groups of 1.8 subjects.

9. Gettys, :C,, iUannin&, C., liehle, T., and Fisher, S. Hypothesis
generation: A final report of three years of research (TR 15-10-80).
Norman, Ok.: University of Oklahoma, Decision Processes Laboratory,
October 1980.

This final report summarizes 14 experiments conducted over a three-
year period. First discussed is a hypothesis generation model and research
which addresses the model. Several major findings were obtained: 1)
Hypothesis retrieval from memory is impoverished. Hypothesis generators are
not able to retrieve all relevant hypotheses from memory that should be
considered in a decision problem. 2) Hypotheses that are retrieved from
memory are first checked for logical consistency with the data. Those
hypotheses that are logically consistent may be assessed further for
plausibility. 3) hypothesis generators think that collections of hypotheses
which they generated are much more complete than they actually are.

% . The next section discusses research on hypothesis generation
performance. Topics include protocol analysis, group hypothesis generation,
the biasing effects of schemata, individual differences in hypothesis
generation, and generalizing to expert populations.

A third section is devoted to a survey of research relevant to aiding
the hypothesis generation process. An artificial aid for retrieving
hypotheses from memory is discussed. Also discussed are other ways of
improving hypothesis generation performance.

The general conclusion of this project is that both the failure to
retrieve enough hypotheses from memory and the subjects' belief that these
collections of hypotheses are more complete than they actually are can be
traced to deficiencies in the memory retrieval process.

4 l
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The act and outcome generation contract (N00014-80-C-0639):

10. Gettys, C., ianning, C. & Casey, J. An evaluation of human act
generation performance (TR 15-8-81). Norman, Ok.: University of
Oklahoma, Decision Processes Laboratory, August 1981.

A series of experiments addressed the adequacy of act generation
*; performance, an important precursor to problem structuring. Each of two
_" decision problems was studied by a series of three experiments. In the

first experiment, subjects were given a realistic decision problem and were
asked to respond with any act occurring to them. In the second experiment,
the acts suggested were evaluated by different subjects for feasibility. In
a third experiment, additional subjects estimated the utility of the acts
judged. feasible. The act generation performance of subjects was evaluated
using two techniques. First, a decision tree was generated by the
experimenters by combining the acts suggested by all subjects. The decision
tree generated by-each subject was compared with the experimenter-generated
tree. It was found that subjects failed to generate important limbs and
branches of the group decision tree. Second, the quality of the trees
generated by individual subjects was evaluated by an opportunity loss
calculation. This calculation provided an estimate of the potential cost of
failing to generate limbs and branches of the decision tree. The
opportunity loss analysis suggested that the failure to generate a complete
tree could be costly.

11. Ntanning, C. Describing the representation of decision problems: An
application of multidimensional scaling and cluster analysis (TR 15-
12-81). Norman, Ok.: University of Oklahoma, Decision Processes
Laboratory, December, 1981.

The purpose of this study was to describe the important

representations for an example of a common class of decision problems,
facing a shortage of a commodity. Describing potential problem
representations is important because decision problems are typically ill-
structured (Taylor, 1914), and a decision makers representation of a
problem is not obvious to the experimenter. Describing the dimensions along
which a group of subjects judged the similarity of potential solutions to a
problem should give insight into various ways in which the problem may be
represented. This will provide a basis for additional research on the
processes involved in the generation of act solutions and their associated
outcomes.

Multidimensional scaling and cluster analysis were used to analyze the
similarity of 43 acts suggested to solve the parking problem at Oklahoma
University. In Experiment 1, sixty subjects rated the similarity of a set
of randomly chosen act pairs. The similarity judgments were averaged across
subjects and submitted to the ALSCAL procedure of SAS. A three dimensional
solution was identified as most appropriate. In Experiment 2, fifty
subjects rated randomly chosen subsets of the same acts on twelve bipolar
scales which represented potential ways of representing a problem. Three
scales suggested generic strategies for solving the problem. Four scales
suggested problem-solving strategies specific to the parking problem. One
scale suggested a personal goal which might be fulfilled by employing an
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action. Four scales were potential measures of the acts' utility. The scale
ratings obtained in Experiment 2 were averaged across subjects, then
regressed on the three dimensional solution derived from multidimensional
scaling to objectively describe the dimensions.. The three dimensions were
found to most closely resemble specific strategies for solving the parking
problem. Dimension 1 was identified as "involves alternate forms of
transportation". Dimension 2 was identified as "involves rescheduling
activities" and "changes current priorities". Dimension 3 was identified as
"requires building new facilities".

Hierarchical cluster analysis was used to analyze the similarity
judgments to examine neighborhoods of acts in the three dimensional space
to determine whether an alternative interpretation of the relationships
between acts might be obtained. Seven clusters were identified. Four
clusters were specific instances of a more general category "increase the
amount of space available". Another cluster was the category "involves
alternate forms of transportation". Two other clusters involved
rescheduling activities and enforcing current parking regulations more
strictly.

The three dimensions derived from multidimensional scaling and the set
of clutters obtained from cluster analysis seem to describe alternative
strategies for solving the parking problem from which individual decision
makers might sample when representing the problem. Although in real-world
decision problems, the problem space is unstructured, these results suggest
that a limited number of constructs may sufficiently describe the important
problem representations decision makers employ to interpret a problem.

12. Pliske, R., Gettys, F., lanning, C. & Casey, J. Act generation
performance: the effects of incentive (TR 15-8-82). Norman, Ok.:
University of Oklahoma, Decision Processes Laboratory, August 1982.

Two experiments explored the generalizability of earlier research
which indicated that human.act generation performance was impoverished.
Subjects were given a realistic decision problem and were asked to generate
actions which could be taken to solve the problem. Subjects in two
incentive conditions were offered monetary rewards for generating
additional actions. Subjects in one condition were rewarded for the sheer
quantity of actions produced and subjects in the other condition were
rewarded for the quality of the actions produced. In a second experiment,
both expert and naive subjects judged the quality of the actions produced
by subjects in the first experiment. The results replicate earlier research
in that most subjects generated relatively few actions and they also failed
to generate important actions as rated by both expert and naive judges.
There were no significant differences between the performance of subjects
in the incentive conditions and subjects in the control condition. Thus,
even when subjects are given substantial monetary incentives to generate
additional actions, their act generation performance is impoverished.
Differences in the act generation performance of the "quantity" and
"quality" incentive conditions are discussed.
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13. Casey, J., Gettys, C., Pliske, R. & Nehle, T. A partition of small

group performance into informational and social components (TR 30-8-
82). Norman, Ok.: University of Oklahoma, Decision Processes
Laboratory, August 1982.

New theoretical and methodological techniques for partitioning and
.- identifying the sources of performance differences between groups and

individuals in hypothesis and act generation tasks are presented in two

experiments. Experiment I presents a two-component model which separates

group performance into informational and social components. The model

proposes that the pooling of information in an interacting group (the

information component) is mediated by the social factors (e.g., level of

arousal, cohesiveness, etc.) which are present in a given situation (the
social component). Interacting groups were found to be inferior to nominal
groups in an hypothesis generation task. Thus, in Experiment 1, the social

"~ component was found to have a negative effect on the information component.
Experiment 2 further partitions the social component into a social
information component which accounts for the additional information which
becomes available as a result of group interaction and a social, non-
informational component which consists of purely social factors. The social
information component estimates the synergistic effect of group interaction
on information retrieval. The social informational component was estimated
by including a group of subjects who exchanged ideas (information) via
computers but had no social interaction. The "information exchange" group
was found to be somewhat superior to a nominal group in an act generation
task, and both of these groups were superior to an interacting group.
Experiment 2 illustrates that even when the social, non-informational
component has a negative effect on the informational component, the social
information component may have a positive effect.

14. Manning, C. The Role of a Decision Haker's Perspective in the
Generation and Assessment of, Actions in a Conflict Situation (TR 15-
9-82). Norman, Ok.: University of Oklahoma, Decision Processes
Laboratory, September 1982.

Two experiments were performed to assess the influence of perspective
and information on the generation of actions an opponent might take to
resolve a conflict. Both experiments, employed a problem in which guerrilla

-. forces captured the French embassy in a hypothetical South American country
and took the personnel hostage. In the first experiment, subjects were
assigned the perspective of a guerrilla, a hostage, or an advisor to the
President of France. Subjects generated five actions the French government
was most likely to take to resolve the conflict, ranked the actions, then
provided likelihood estimates and estimates of the French governmentIs
preferences for a specified set of actions. Ho large differences in
performance resulteo from manipulating perspective. However, some subtle
differences were observed. Hostage subjects generated acts more likely to
benefit both the guerrillas and the French than subjects in.other
conditions. All Guerrilla subjects generated at least one military action,
while some subjects in the other perspective conditions failed to generate
any.

Experiment 2 was performed to assess the effect of providing both a

perspective and information about. an opponent's objectives on the

,, generation of actions the opponent might take to resolve a conflict.
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Subjects in one Guerrilla condition read irrelevant information about the
geography of France, subjects in another Guerrilla condition were asked to
imagine the French government's objectives, and subjects in a third
Guerrilla condition were provided with an explicit description of the

-French government's objectives. Another set of subjects assigned the French
perspective was used as a control condition. Again, no major differences
were found in act generation, but some subtle differences were observed.
The Guerrilla subjects who read explicit information about the French
government's objectives generated acts that were more beneficial to the
French than subjects in the other Guerrilla conditions. Guerrilla subjects
reading irrelevant information about France generated acts that tended to
benefit both parties more than the acts generated by French subjects. In
neither experiment did subjects differ in their estimates of the likelihood
with which the French government might take a specified set of actions or
in their estimates of the French government's preferences for a specified
set of actions.

These results may suggest that perspective has only a limited
influence on the generation and assessment of actions an opponent might
take to resolve a conflict. Uithout further research, it is difficult to
determine whether perspective impairs a decision maker's performance in a

%conflict situation or whether its influence is only salient in hindsight.

15. Pliske, R. & Gettys, C. The role of causal explanation in outcome
generation (TR 8-2-83). Norman, Ok.: University of Oklahoma, Decision
Processes Laboratory, August 1983.

It is assumed that Decision makers generate possible outcomes for
action by creating a mental model, ie. a causal schemata which represent
the decision maker's model of the way the world works. Some causative
factors are seen as relevant, and others are seen as irrelevant. Those
relevant causal factors that are included in the mental model form a casualfield, and the causal field determines to a large extent the outcomes that
are generated. Therefore, when the decision maker first attempts to
generate outcomes for an act, a causal field is created, and this causal
field may persist throughout the outcome generation task. The persistence

.- of the causal field in the decision maker's thinking may make it difficult
to create other, alternate mental models which might enable the decision

- - maker to anticipate other outcomes for that act.

The present investigation examines the. persistence of initial causal
fields, and the cognitive mechanisms that iftay be responsible for this
persistence. In the first study of this series, subjects were asked to
explain one of several outcomes selected by the experimenter thus defining
a causal field. Then they made predictions about the future outcome of the

.* decision problem, identified factors in the causal field, generated
alternate outcomes and estimated their likelihood, and made judgments about
what factors would be important in determining the future. Subjects tended
to focus on the same factors that were present in their initial explanation
when generating additional outcomes, and their predictions about future

W-. events were biased by their initial explanation. However, they tended to
generate the same numbers of success and failure outcomes, and their
estim.ates of the likelihoods of these outcomes was also uninfluenced by the
initial explanation they made. These results suggest the importance of the

. * initial causal field has in outcome generation. A second study explored why
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the causal field persists. The persistence is not due to selective encoding
-. of the task information, but rather seems to be due to persistence of

inferences that the subjects made from the task information when making
their initial explanation.

16. Gettys, C.,Kelley, M., Pliske, R. & Beckstead, J. Problem analysis and
definition in act generation (TR 8-8-83). Norman, Ok.: University of
Oklahoma, Decision Processes Laboratory, August 1983.

Three experiments are reported which provide converging evidence
suggesting that problem analysis and definition is an important component
in generating actions that might solve a problem. Subjects in the first
experiment were given two types of cues to help them create solutions to a
typical shortage problem. In one condition these cues were generic
strategies for solving the problem, whereas in the other condition,
specific implementations of these generic strategies were used as cues.
Subjects were able to translate the generic cues into specific
implementations as expected, but were relatively unsuccessful at extracting

-¢ the generic "kernels" from cues that were in the form of specific
implementations and exploiting variations of these ideas. The second
experiment explored the "incubation" phenomena by having subjects resume

- generating possible solutions to a problem one week after their initial
attempt. It was found that problem reorganization rarely occurred between
the first and second sessions, and that most of the ideas generated in the
second session were elaborations or variations of first-session ideas. The
third experiment examined the effects of explicit training in problem
analysis and definition. Subjects who received this training showed an
improved ability to generate examples of most of the generic solutions to
the problem, and tended to generate more indirect solutions to the problem.

17. Engelmann, P. & Gettys, C. Ability and expertise in act generation
(TR30-9-83). Norman, Ok.: University of Oklahoma, Decision Processes
Laboratory, November 1983.

Act generation is a process used by decision makers to create a set of
possible actions that might solve a problem. Since previous research had
shown college students to generate incomplete sets of possible actions in
act generation, the sets of actions generated by experts were examined in
the first of two experiments to see if they were more complete. In the
first of the two experiments, graduate psychology students were given an
act generation task on a subject at which they were expert. Verbal

.-. behavior was recorded to aid in the description of expert performance.

In the second experiment the same graduate psychology students were
given a task at which their expertise should be of little or no value and
were compared to a group of undergraduates. Hleasures of act generation
performance in both experiments included measures of quantity and quality
of actions generated.

Graduate psychology students serving as experts in the first
experiment excelled in terras of the quality and the quantity of the
generated actions. Their performance was markedly superior to the

S.performance found of non-experts in previous experiments on act generation.

11.9
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In the second experiment, where expertise was not an issue, graduate

1-. psychology students again excelled as compared to the undergraduates. One
clue that may account for the large performance differences observed
between the two groupi in the second experiment is divergent thinking
ability. This ability, as measured by Guilford's "Alternate Uses" test,
was approximately twice as high for the graduate student subjects as
compared to the undergraduates.

Since excellent act generation performance of graduate psychology
students was found in tasks at which they were either expert or non-expert,
divergent intellectual ability was implicated as the source their of
excellence. In conclusion, while high intellectual ability was shown to be
valuable in generating a nearly exhaustive set of actions, the issue of the
effect of expertise on act generation performance remains unsettled.

18. Gettys, C. Research and theory on predecision processes (TR 11-30-83).
Norman, Ok.; University of Oklahoma, Decision Processes Laboratory,

4. November 1983.

the This monograph discusses six years of research aud theory building at
the Decision Processes Laboratory concerned with predecision processes, the
cognitive processes that occur prior to making the actual decision. These
processes include problem detection, the process by which the decision
maker decides that a problem exists; act generation, the process of
creating candidate acts that might solve the problem; hypothesis
generation, where various states of the world are identified that might

- affect the outcomes of various actions; and outcome generation, a process
where the possible results or outcomes of actions are generated.

There are nine .siub-stantive chapters in the monograph. The first five
chapters are concerned with modeling the various predecision processes and
describe the empirical research that addreases these models. Chapter 6 is
devoted to research on various topics such as schemata, causal explanation,
sma!l group research, individual differences, and expertise in various
predecision processes. Chapter 7 discusses recommendations for improving
predecision performance, including specific attempts to aid the decision
maker, and chapter 8 presents, in summary form, the major conclusions of
this program of resqarch. In a chapter .9, general suggestions are made for
further research in the area. Also included are titles and abstracts for
all technical reports produced in both contracts.
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